The Industrial Utility of Public Water Supplies in the United States, 1952

Part 2. States West of the Mississippi River

By E. W. LOHR and S. K. LOVE

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1300

UNITED STATES DEPARTMENT OF THE INTERIOR

150-4

Douglas McKay, Secretary

GEOLOGICAL SURVEY

W. E. Wrather, Director

ERRATA SHEET -- WATER-SUPPLY PAPER 1300

- Titles for figures 1 (p. 15), 2 (p. 30), and 3 (p. 33) were omitted and should read as follows:
 - Figure 1.--Number of persons using water in four ranges of hardness from large public supplies in the United States, 1952.
 - Figure 2.--Percent of population using water of different treatment from public supplies for 1,315 of the larger cities in the United States, 1952.
 - Figure 3.--Physical plant facilities for public water supplies for the larger cities in the United States, 1952.

CONTENTS

	Page
Abstract	1
Introduction	2
Acknowledgments	3
Division of work	3
Analyses of water from public supplies	5
Sources of analyses	5
Collection of samples	5
Applicability of analyses	6
Expression of results	7
Composition of natural waters	8
Mineral constituents in solution	8
Silica	8
Aluminum	8
Iron	8
Manganese	9
Calcium and magnesium	9
Sodium and potassium	9
Carbonate and bicarbonate	9
Sulfate	9
Chloride	10
Fluoride	10
Nitrate	10
Dissolved solids	10
Properties and characteristics of water	10
Color	10
Hydrogen-ion concentration	11
Specific conductance	11
Turbidity	11
Temperature	12
Corrosiveness, causes, prevention	12
Hardness	12
Hardness of public water supplies	13
Ranges in hardness	14
Weighted average hardness	16
Average hardness	22
Median hardness	25
Sources and treatment of public water supplies	28
Natural surface water	30
Treated surface water	30
Ground water	31
Mixed supplies	31
Physical plant facilities	31
Treatment of water	33
Natural purification	33
Filtration	34
Rapid sand filtration	34
Plain sedimentation	34
Coagulation	34
Mixing and settling basins, filters	35
Slow sand filtration	35
Disinfection	36
Adjustment of pH	36

Treatment of waterContinued	Page
Tastes and odorsIron and manganese removal	36 37
Municipal softening	38
Fluorides and fluoridation	39
Industrial treatment of water from public supplies	
Boiler feed water	
Scale, corrosion, embrittlement, foaming and priming	
Internal treatment.	
Water for industrial processes	
Domestic treatment of water from public supplies	45
Publications	46
Water-supply papers	
U. S. Geological Survey circulars	
References	
Descriptions and analyses of public water supplies in the States west of	
the Mississippi River	
Arizona	• •
Arkansas	~-
Colorado	
Idaho	
Iowa	166
Kansas	
Louisiana	
Missouri	
Montana	
Nebraska	270
Nevada 2	
New Mexico	
Oklahoma	
Oregon	000
South Dakota	337
Texas	
Utah	
Washington	
.,,	440
ILLUSTRATIONS	
This is a straight of the stra	Page
Plate 1. Weighted average hardness, by States, of finished water from public supplies for 1,315 of the larger cities in the United	
States, 1952	. 21
supplies for 1, 315 of the larger cities in the United States, 1952	. 21
Percent of population, by States, served from public supplies with water having hardness of 100 parts per million or less for	
1,315 of the larger cities in the United States, 1952	. 21
 Average hardness, by States, of finished water from public sup- plies for 1, 315 of the larger cities in the United States, 1952. 	99
5. Average hardness, by States, of raw water from public supplies	23
for 1, 315 of the larger cities in the United States, 1952	. 24

CONTENTS V

TT :	4	Number of severe union mater in four severe of handsons from	Page
Figure	1. 2.	Number of persons using water in four ranges of hardness from large public supplies in the United States, 1952 Percent of population using water of different treatment from	15
		public supplies for 1, 315 of the larger cities in the United States, 1952.	30
	3.	Physical plant facilities for public water supplies for the larger cities in the United States, 1952	33
		·	
		TABLES	
		_	
			Dogo
Table	1.	Sources of analyses in this report	Page 5
	2.	Number of persons using water in different ranges of hardness from public supplies for 1,315 of the larger cities in the	14
	3.	United States, 1952	14
	4.	larger cities in the United States, 1952	15
	5.	public supplies for 1,315 of the larger cities in the United States, 1952	15
	٥.	supplies in each State, 1952.	17
	6.	Weighted average hardness of finished water from large public	18
	7.	supplies of States bordering the Great Lakes, 1952 Weighted average hardness of raw water from large public sup-	10
	_	plies of States bordering the Great Lakes, 1952	18
	8.	Weighted average hardness of raw water from large public supplies in each State, 1952.	20
	9.	Population served, and the percent of population served with	
		water from public supplies having hardness of 100 parts per million or less for 1,315 of the larger cities in the United	
		States, 1952	21
1	0.	Number of supplies, and average hardness, by States, of	
		finished water for 1, 315 of the larger cities in the United States, 1952.	23
1	11.	Number of supplies, and average har less, by States, of raw	
1	2.	water for 1,315 of the larger cities in the United States, 1952. Number of supplies, range in average hardness, and median	24
_	. <u>.</u> .	hardness of finished water, by States, for 1,315 of the larger	
		cities in the United States, 1952	26
j	13.	Number of supplies, range in average hardness, and median hardness of raw water, by States, for 1,315 of the larger	
		cities in the United States, 1952.	26
1	4.	Summary of data on hardness of public water supplies, by States, for 1, 315 of the larger cities in the United States, 1952.	27
1	5.	Source and treatment of the public water supplies of 1,315 of the	41
	c	larger cities in the United States, 1952	29
į	6.	Physical plant facilities for public water supplies for the larger cities in the United States, 1952	32
1	7.	Number of places and population, in thousands, using water with different quantities of fluoride from large public supplies	
1	8.	in the United States, 1951Suggested water-quality tolerance for boiler feed water	40 41
	9.	Industrial requirements for water	41
2	0.	Suggested water-quality tolerances	44

ABSTRACT

Public water supplies are utilized extensively by industries for processing, cooling, and steam generation. The requirements as to quality of water for each industry are specific, therefore information on the quality or chemical character of the water supply is essential not only in the location of industrial plants but also is an aid in the manufacture and distribution of products.

Data are given in this report on the water supplies for 1, 315 of the larger cities (or places) throughout the United States. The population of these cities represents 58.3 percent of the total population (1950 census), and more than 90 percent of the total urban population, of the United States. Part 1 of the report contains data for 819 cities east of the Mississippi River, and part 2 includes data for 416 cities west of the river. All cities of 15,000 or more population and many cities of smaller population are included.

The information given for each place includes, in most instances, population of the place; ownership, source, and treatment of supply; storage facilities for both raw and finished water; and chemical analyses of the supplies.

The chemical quality of a water affects its industrial utility. A total of 2,506 chemical analyses of the supplies for the places included are shown. Surface-water supplies, generally, are more variable in composition than ground-water supplies, but contain less mineral matter in solution. Many of the treated public supplies require further treatment to make them satisfactory for some industrial uses. Of the total of 1,315 places included in the report, 711 receive surface-water supplies; 472 receive ground-water supplies, and 132 receive mixed supplies. The population served by these supplies is about 88,000,000, of which about 71,000,000 receive surface-water supplies and 17,000,000 ground-water supplies.

Harduess of water supplies with respect to industrial use is given much attention. The hardness of the large public supplies ranges from less than 5 parts per million to about 700 parts. About 52,000,000 people are furnished with water having hardness of 100 parts per million or less.

The weighted average hardness (average hardness of supplies weighted according to the population served) of finished water of surface supplies is 82 parts per million; of ground supplies, 162 parts; and of all supplies, 97 parts. The weighted average hardnesses of raw water of surface, ground, and all supplies are 96, 200, and 116 parts per million, respectively.

The average hardness (based on the average hardness of each supply and the number of supplies) of finished water of surface supplies is 85 parts per million; of ground supplies, 164 parts; and of all supplies, 121 parts. The average hardnesses of the raw water supplies are 94, 192 and 139 parts per million, respectively.

The median hardness of finished water of all supplies is 91 parts per million, and of the raw water supplies, 90 parts.

The treatment of a public water supply is planned principally to give a water that is bacterially safe for public use, and to eliminate or minimize certain undesirable characteristics of the water. Of the supplies for the places in this report, a total of 117 (3 surface supplies and 114 ground supplies) receive no treatment; 393 supplies receive no treatment other than chlorination; and the remainder receive treatment in addition to chlorination. The supplies for 171 cities are softened. Rapid sand filter plants are in use for 533 cities, exclusive of those in use at places where the water is softened. Slow sand-filter plants are in use at 35 places. A population of about 40,000,000 is served with water from these filter plants.

The total number of treatment plants, exclusive of facilities for chlorination, for most of the places in this report is 660. The total capacity of these plants in millions of gallons per day is 10,694.

A total of 693 places report raw-water storage facilities having a total capacity of 2, 460, 346 millions of gallons; a total of 1,081 places report finished-water storage facilities having a total capacity of 24,557 millions of gallons.

Investigations by others have shown that a definite relationship exists between fluoride in drinking water and the incidence of dental caries in the teeth of children. A total of about 85 percent of the population served from the large public supplies receive water having a fluoride concentration in the range of 0.0 to 0.5 part per million. Few large public supplies contain fluoride in concentrations in excess of 3 parts per million. A total of 155 places of those included in the report received fluoridated water in 1550

1

INTRODUCTION

The most valuable of all our natural resources, except for the land itself, is water. Generally taken for granted and considered practically inexhaustible during the 19th century, water is today one of the most actively managed of all our natural resources. Large sums of money are spent each year for surveys, reclamation, conservation, power development, and flood control.

Water is different from most minerals in that it is fluid and active. Moreover, its chemical character is ever changing, not only because of natural processes in its trip from clouds to seas but also because of the myriad activities of man. Water supply is a complex problem, and it is of extreme importance to communities, agriculture, industries, and commerce. Without water these things could not exist; nor could life itself.

An adequate water supply of either ground water or surface water, or both, is often a prime requisite in the selection of sites for industrial plants. It is estimated that American industry in 1950 used 75 billion gallons of water per day from private sources and about 6 billion gallons per day from public water supplies. Furthermore, industries require a process water of specific characteristics or standards of quality. For example, process water used in the manufacture of textiles must be practically free of suspended matter, iron, and color and must be very low in dissolved minerals, especially calcium and magnesium. Specific requirements of quality for process water in certain industries are so exacting that extensive treatment for many natural waters is usually necessary to make them suitable for use. Therefore, an important factor in the selection of sites for industries, in addition to an adequate supply of water, is the specific quality of the supply.

Information as to the chemical character of the water is essential not only in the location of many industrial plants but also to the distribution of the products manufactured. The manufacturer of water-softening equipment would not expect to find a ready market for his product in an area where the water supplies are soft. The need for materials and appliances for control of corrosion in water pipes, and the selection of boiler-plant and water-softening equipment will be influenced by the chemical character of the water.

Many of the water-supply papers of the U. S. Geological Survey and reports made in cooperation with State agencies contain considerable information relating to the chemical quality of water in the United States. See page 46 for the partial list. Among these are the annual "quality of surface water" reports beginning in October 1941, which give the results of comprehensive investigations in different areas of the country for the year named. Other reports give the results of comprehensive investigations within a State, among which are those dealing with the public water supplies; still others give information on the geology and the occurrence and availability of ground-water supplies with brief discussions of the chemical character of the water encountered in the area of investigation.

Reports showing the chemical character of the public water supplies of the larger cities of the United States were published in 1923 and 1934. The last published report, Geological Survey Water-Supply Paper 658, contains data for 670 of the larger cities, representing 46 percent of the total population of the United States. It has filled an important need in the field of water-supply engineering. The insistent demand for more current information and a more extended coverage has led to the present report. Descriptive and analytical data for about 75 percent of all the places that are included in the two volumes of this report have been published in a recent series of nine Geological Survey circulars, each circular covering a prescribed section of the country. The present report gives data for 1,315 places, representing 58.3 percent of the total population of the United States. It includes data for all places of 15,000 or more population, 80 percent or more of the total urban population of each State, and at least 10 places for each State except Delaware. Many places of less than 15,000 population are included in order that either 80 percent of the total urban population of the State or 10 places for each State might be represented. It was felt that the use of the above criteria for the

selection of the places to be included in the report would give adequate representation for each State.

Part 1 of the report includes data for 819 places in the 26 States and the District of Columbia east of the Mississippi River; part 2, for 496 places in the 22 States west of the Mississippi. The text material and illustrations and the form of the tables are identical in both parts of the report and apply to the country as a whole. The statements made in regard to the supplies as a whole and to other subjects are generally applicable in each part of the report.

An important part of this report is the descriptive and analytical data pertaining to the water supplies of the individual places. Although not as complete and representative as desired in some instances, these data are intended to show conditions as they existed at the time of collection. From the data as presented inferences and conclusions can be drawn as to the general character of the water and its general usability for many industrial purposes. In the use of the data, it must be borne in mind that many supplies from surface sources are quite variable in composition; that ground-water supplies are more uniform in composition than surface supplies; and that most of the analytical data relate to the treated or finished water as served to the consumers, although much information is given as to the character of the raw-water supplies.

The general discussion of hardness and the illustrations and tables with reference to the distribution and use of water of different hardness are of considerable value or importance in the report, since hardness is a characteristic of water that affects both the domestic and industrial use of water. Caution is necessary in the use of generalized data relative to the hardness of public water supplies, when location of industrial plants or industrial activities require more specific data as to the chemical character of the water supplies.

Fluoride occurring naturally in water supplies and the fluoridation of public water supplies, because of the effects of fluoride on the incidence of dental caries in the teeth of growing children and not because of the effects on the industrial use of the water, are discussed at some length.

Discussions of the various aspects of water supply and treatment are necessarily brief in this report. Fuller and detailed discussions are to be found in papers and books on the subjects.

ACKNOWLEDGMENTS

State departments of health, city and waterworks officials, private water companies, and commercial laboratories furnished many analyses, water-supply and water-plant data on forms prepared by the Quality of Water Branch for the purpose, and collected samples of water for analysis. (See table 1.) For these data and assistance grateful acknowledgment is made.

Many of the personnel of the Surface Water Branch and the Ground Water Branch, Water Resources Division, assisted in obtaining data in certain areas pertaining to the supplies and collecting samples for analysis. Grateful acknowledgment is made for this cooperation and assistance.

DIVISION OF WORK

This report is the result of the efforts of many of the personnel of the Quality of Water Branch of the Geological Survey under the general supervision of S. K. Love, chief, Quality of Water Branch. The efforts of the various members of the branch who participated in the work were coordinated by E. W. Lohr, chemist, who also reviewed and compiled all data submitted by the district offices of the branch, wrote the body of the text, and was mainly responsible for the tables and illustrations.

The analyses made by the Geological Survey for inclusion in the report were made in the district laboratories by the Quality of Water Branch in different sections of the country under the immediate supervision of the district chemists at the time. The district offices also collected other data pertaining to the supplies in the States comprising their districts. The States comprising the different districts, the location of the district offices, and the personnel in charge at the time the work was in progress, are named below.

- · · · · · · · · · · · · · · · · · · ·	
State	District or Regional Office
Alabama Arkansas Mississippi Missouri (part) Tennessee	I. S. T. Building, University of Arkansas, Fayetteville, Ark. G. A. Billingsley J. W. Geurin
California	2520 Marconi Avenue, Sacramento 21, Calif. I. W. Walling
Connecticut District of Columbia Florida Maine Maryland Massachusetts New Hampshire New Jersey New York Rhode Island Vermont	General Services Administration Bldg. Washington 25, D. C. S. K. Love W. F. White E. W. Lohr
Colorado (part) Iowa Kansas Minnesota Missouri (part) Montana (part) Nebraska North Dakota South Dakota Wyoming (part)	510 Rudge Guenzel Bldg. Lincoln 8, Nebr. P. C. Benedict H. A. Swenson
Arizona Colorado (part) New Mexico	P. O. Box 293, University Station, Albuquerque, N. Mex. J. D. Hem
Georgia North Carolina South Carolina	P. O. Box 5668, Raleigh, N. C. F. H. Pauszek
Illinois Indiana Kentucky Michigan Ohio West Virginia Wisconsin	2822 East Main Street, Columbus, Ohio W. L. Lamar P. N. Brown
Kansas (part) Oklahoma	P. O. Box 4355, Oklahoma City, Okla. T. B. Dover

State	District or Regional Office
Delaware Pennsylvania	1302 Custom House, Philadelphia, Pa. N. H. Beamer E. F. McCarren
Louisiana Texas	302 West 15th St., Austin, Tex. B. Irelan J. R. Avrett
Colorado (part) Idaho Montana (part) Nevada Oregon Utah Washington Wyoming (part)	P. O. Box 2657, Fort Douglas, Salt Lake City, Utah C. S. Howard R. T. Kiser
Virginia	P. O. Box 1488, University Station, Charlottesville, Va. J. G. Connor

ANALYSES OF WATER FROM PUBLIC SUPPLIES

SOURCES OF ANALYSES

Most of the analyses in this report were made during its preparation in the laboratories associated with the District offices of the Quality of Water Branch of the Geological Survey. Analyses from other sources were freely used as indicated in table 1. The lack of space prohibits giving the names of the individual analysts, although the names of the laboratories making or furnishing the analyses are given in the tables of analyses for the individual places.

Table 1. --Distribution of sources of analyses used

Source	Number of analyses	Number of places
U. S. Geological Survey laboratories: This reportOther reports	1,781 185	1,008 56
State laboratories	268 155 117	107 109 35
Totals	2,506	1,315

Many analyses and other data not printed in this report were available. These analyses and data were valuable aids in the selection of the analyses and data which are printed.

COLLECTION OF SAMPLES

Many samples for analysis were collected by the personnel of the Quality of Water Branch and other members of the Water Resources Division of the Geological Survey. Other samples were collected in containers furnished by the Geolog-

ical Survey by waterworks, city, and health-department officials. At many places samples were collected of both raw- and finished-water supplies especially at those places where the treatment of the raw water was extensive or where the water was softened. Many samples of finished water were collected at the treatment plants of the individual cities; other samples were collected from city taps of the distribution systems. The samples collected are considered to be representative of the supplies at the time of collection.

APPLICABILITY OF ANALYSES

The analyses made by the Geological Survey used in this report were made by methods developed by the Quality of Water Branch or adapted from methods in general use for the mineral analysis of water. (Am. Pub. Health Assoc., 1946; Am. Soc. for Testing Materials, 1947). The analyses made by other laboratories were carefully examined for possible errors in order that the information given might be reliable. The reporting of these analyses has been made to conform to the Geological Survey method of reporting the results of water analysis and any difference in the analyses as published and originally submitted is because of this. Many waterworks laboratories make daily determinations of alkalinity, pH, and hardness which give some indications as to the extremes in chemical composition of the supplies. These data are given in the tables of analyses whenever they were available. Every effort has been made to give reliable information as to the chemical character of the water supplies at the time the analyses were made and throughout the year.

Single analyses of supplies from lakes and large reservoirs represent fairly well the chemical character of the water throughout the year, but for many supplies taken directly from streams or from small impounding reservoirs a single analysis will not represent the character of the water for the year. It may so happen that the single analysis will represent about the average character of the water for the year. Many streams are very variable in character not only with the seasons but with rapid changes in stage. Obviously a single analysis of such streams will not show the extremes in chemical composition of the water, and many analyses of daily samples or frequent samples are necessary to show the composition of the water throughout the year.

Some waterworks laboratories make complete analyses of composites of daily samples. Where available, averages of these analyses are given in the table of analyses. Averages of analyses of 10-day composites of daily samples for a period of a year are shown for a number of supplies. Analyses of composites of daily samples with the maximum and minimum content of dissolved solids are shown in a few instances. The single analyses and other analyses taken together with the analytical data furnished by the waterworks laboratories give reliable information as to the chemical character of many surface-water and treated-water supplies.

For many places that have several sources of supply, analyses are usually given representative of the several sources or of the combined sources. It is obvious that if different sections of a city are served by different sources, an analysis of a sample collected in one section of the city may not represent the character of the water served in the other section or the entire city. Statements in the descriptive data for the supplies of these places are made to show the percent of supply from each source. In many instances it was not possible to give analyses of each of the sources of supply.

Ground water, in general, is much more uniform in composition than surface water. A single analysis may suffice to show the general character of the water throughout the year not only for a single source but also for multiple sources furnishing water of similar composition. However, many places obtain public supplies from several wells or groups of wells in several well fields that differ considerably in chemical composition. Sometimes water from these various sources is pumped directly into the distribution system in different sections of the city. Sometimes groups of wells or individual wells are pumped at different times. For most such supplies analyses are selected to show the character of the water of the entire supply, or the several sources of supply, or the range or differences in

composition of the water from the individual wells or several groups of wells. It is obviously necessary to consider the descriptions of the sources of supply, the percent of supply obtained from each source, and the analyses of the supplies in order to evaluate or plan in connection with the use of the data of such groundwater supplies.

EXPRESSION OF RESULTS

The dissolved mineral constituents are reported in parts per million. A part per million is a unit of weight of a constituent in a million unit weights of water. Equivalents per million, though not given in this report, are sometimes preferred to the expression of results in parts per million. An equivalent per million is a unit chemical combining weight of a constituent in a million unit weights of water. Equivalents per million for any constituent are obtained by dividing the concentration of the constituent in parts per million by the chemical combining weight of the constituent. For convenience in making this conversion the reciprocals of chemical combining weights of the most commonly reported constituents are given in the following table:

Constituent	Factor	Constituent	Factor
Iron (F+++)	0.0537	Carbonate (CO,)	0.3333
Manganese (Mn++)	. 0364	Bicarbonate (HCO ₃ -)	. 0164
Calcium (Ca++)	. 0499	Sulfate $(SO_4^{})$	
Magnesium (Mg++)	. 0822	Chloride (Cl ⁻)	. 0282
Sodium (Na+)	. 0435	Fluoride (F-)	. 0526
Potassium (K+)	. 0256	Nitrate (NO_3^-)	. 0161

Results in parts per million can be converted to grains per United States gallon by dividing by 17.12

A calculated quantity of sodium and potassium as sodium, given in some analyses, is the quantity of sodium needed in addition to the calcium and magnesium to balance the anions.

Total hardness as used in this report means, in most instances, the hardness expressed as calcium carbonate caused by calcium and magnesium in the water; it is obtained by calculation from the results of determination of these two constituents by either gravimetric or volumetric methods. In a few instances, other substances such as aluminum, iron, manganese, strontium, and free acid, which also cause hardness, have been included in the calculations. Many determinations of hardness made at waterworks treatment plants are made with soap solutions, and such results for total hardness tend to be lower generally and less accurate than those obtained by calculation. The volumetric test for hardness using ethylenediamine tetraacetic acid is much more reliable and is rapidly replacing the soap test (Connors, 1950). Hardness is further discussed on pages 12, 13-28.

Color is expressed in units of the platinum cobalt scale proposed by Hazen (1892, p. 427-428).

Hydrogen-ion concentration is expressed on the pH scale.

Specific-conductance values are expressed as micromhos per centimeter at $25\,^{\circ}$ C. In many reports conductance is designated by the letter "K", and values expressed as above may be written $K\times 10^6$ at $25\,^{\circ}$ C. A micromho is a millionth of a reciprocal ohm.

Turbidity is expressed as units of turbidity on the silica scale (U. S. Geological Survey, 1902).

Alkalinity as reported in the tables of determinations made at treatment plants is expressed as calcium carbonate. Acidity, in some instances, is shown in these tables as a minus alkalinity.

COMPOSITION OF NATURAL WATERS

All natural waters contain dissolved mineral matter. Water in contact with soils and rocks even for only a few hours will dissolve some mineral matter. The quantity of mineral matter dissolved by a natural water depends primarily on the type of rocks and soils with which the water comes in contact and the length of the contact. Some streams are fed by both surface runoff and ground water from springs and seeps. Such streams reflect the chemical character of the more concentrated ground water during dry periods and are more dilute during periods of heavy surface runoff. Ground water usually contains more dissolved mineral matter than surface runoff for it remains in contact with soils and rocks for longer periods of time. The concentration of dissolved solids in a river water may be increased by drainage from mines and oil fields, by discharge of industrial and municipal wastes into the streams, and in irrigated areas by return drain waters.

The mineral constituents and physical properties of the raw and treated supplies in the tables of analyses are those that affect the value of the water for most purposes. The analyses generally include results for silica, iron, manganese, calcium, magnesium, sodium, potassium (or sodium and potassium together as sodium), carbonate, bicarbonate, sulfate, chloride, fluoride, nitrate, dissolved solids, and hardness. Results for color, pH, specific conductance, turbidity, and temperature are reported in many others. The source and significance of the constituents and properties of water supplies are discussed in the following paragraphs.

MINERAL CONSTITUENTS IN SOLUTION

Silica (SiO_2) . --The element silicon is not found free in nature but it occurs as silica in sand, in quartz, and as silicates in feldspar, kaolinite, and other minerals. Silica is dissolved from practically all rocks. Its state in solution in natural water is not definitely known, but it is assumed to be colloidal, and it does not enter into the ionic balance between the acids and bases of a water analysis.

Many natural surface waters, especially lakes, contain less than 5 parts per million and few contain more than 30 parts per million. Well waters generally contain more silica than surface waters, but comparatively few contain more than 50 parts per million.

Silica affects the industrial use of water because it contributes to the formation of boiler scale, or it may help to cement other scale-forming substances into a hard scale; it is usually removed from feed water for high-pressure boilers. Silica also forms troublesome deposits on the blades of steam turbines.

The silica in the treated water of a public supply is usually less than in the raw water if in the treatment process coagulation and filtration are employed. The use of activated silica as a coagulant, either alone or in conjunction with alum, will not increase the silica content of the treated water.

Aluminum (Al). -- Although aluminum is relatively abundant in many rocks and ores some of which are readily soluble, aluminum is present only in negligible quantities in most natural waters for it precipitates from the waters. Acid waters and water that has been in contact with certain types of rocks or ores may contain considerable quantities of aluminum. Aluminum contributes to hardness in water and may be deposited as scale in boilers. It is not reported in the tables of analyses. In a few samples the aluminum content is indicated by footnotes.

Iron (Fe). --Iron is dissolved from practically all rocks, and practically all natural water supplies contain iron in solution. Surface waters, unless acid, rarely contain more than several tenths of a part per million. Acid waters may carry relatively large quantities. Iron in water upon being exposed to air is readily oxidized to ferric hydroxide which will readily settle out of a surface supply unless acid; therefore surface waters generally carry relatively small quantities of iron.

Many ground waters may carry several parts per million of iron. Such waters on exposure to air become turbid with ferric hydroxide as a result of the oxidation

of the iron. The ferric iron will settle out and the water will eventually clear up if it is quiescent. Iron in solution will cause reddish-brown stains on white enamelware, porcelain fixtures, and fabrics washed in these ground waters, which are objectionable also for other domestic and industrial uses.

Many natural waters may be corrosive to the supply system, dissolving sufficient quantities of iron from the pipes to be objectionable in the use of the water for many purposes. Much of the iron in natural waters is removed by the treatment as practiced at the modern water-purification plants, but sometimes such treatment will leave the waters corrosive so that they will dissolve objectionable quantities of iron from pipes in the supply system or household installations.

Manganese (Mn). --Manganese is found in many natural waters, sometimes in appreciable quantities. Water impounded in large reservoirs may contain manganese that has been dissolved from the mud on the bottom of the reservoir. Some ground waters may contain very objectionable quantities of manganese. Waters that contain appreciable quantities of manganese usually contain also objectionable quantities of iron. Manganese is especially objectionable in water used in laundering and textile manufacturing, for it causes dark-brown stains on the fabrics. It will also stain porcelain fixtures. Water supplies containing objectionable quantities of manganese require special treatment for its removal.

Calcium (Ca) and magnesium (Mg). --Calcium and magnesium are dissolved from many rocks but more particularly from limestone, dolomite, and gypsum. Limestone, which is primarily calcium carbonate, and dolomite and dolomitic limestone made up of both calcium and magnesium carbonates are readily soluble in water containing carbon dioxide. Caves and solutions channels in these rocks are the result of this action of water. Comparatively large quantities of calcium are also dissolved from gypsum (calcium sulfate). Calcium is frequently the principal basic constituent in waters that contain relatively small quantities of dissolved solids and are soft waters. Calcium and magnesium are the most universally characteristic constituents of natural waters.

Calcium and magnesium cause hardness in water and contribute to the formation of boiler scale and deposits in hot-water heaters and pipes and in water systems. The calcium and magnesium content and hardness of waters used for public supplies greatly affect the industrial value of the waters.

Sodium (Na) and potassium (K). --The very active metals sodium and potassium are not found free in nature, but their compounds are relatively abundant in the earth's crust and are highly soluble in water. Sodium and potassium are found in all natural waters. Natural waters that contain only 3 or 4 parts of the two together are likely to contain about equal quantities of each. As the total quantity of these constituents increases the proportion of sodium becomes much greater. Waters carrying from 40 to 50 parts per million of the two may carry one-fourth or one-tenth of the quantity as potassium; waters containing more sodium may even have a smaller proportion of potassium.

Some well waters that carry moderate quantities of dissolved material in passage through the earth may undergobase exchange and change from hard waters to soft waters. These waters may contain several hundred parts per million of sodium bicarbonate. Waters in arid and semiarid regions are likely to carry considerable quantities of sodium salts, usually sulfate and chloride. Streams that receive drainage from irrigated lands may carry several thousands parts per million of sodium sulfate. The quantity of sodium and potassium found in the water of most public supplies has comparatively little effect on the industrial use of the water.

Carbonate (CO₃) and bicarbonate (HCO₃). --Carbonate as such is present in relatively few natural waters. Some waters that have been treated with lime contain carbonate or even hydroxide. Free carbon dioxide in rain water increased by a larger amount from decaying organic matter in percolating water, in lakes, and in streams in contact with carbonate rocks or calcareous material is converted into bicarbonate. Bicarbonate is the chief anion in a great many natural waters and in most of the waters used for public supplies. Waters that have been in contact with granitic rocks and rocks of similar characteristics usually contain less than 50 parts per million of bicarbonate and frequently less than 25 parts, whereas those that have been in contact with carbonate rocks may contain as much as 500 parts.

Carbonate and bicarbonate are often reported as alkalinity which is expressed as calcium carbonate. One part of alkalinity as calcium carbonate corresponds to 1.22 parts of bicarbonate.

Sulfate (SO₄). --Sulfate is present in most natural waters, although in many it may be a relatively small quantity. Sulfate may be dissolved in relatively large quantities from beds of gypsum and shale. Some surface waters receiving acid mine drainage may contain considerable quantities of sulfate some of which may be the result of oxidation of the sulfides of iron. Water in arid or semiarid regions may contain relatively large quantities of sodium sulfate.

Sulfate in waters that contain much calcium and magnesium contributes to the formation of hard scale in steam boilers and affects the use of waters in other industrial processes. Aluminum sulfate as a coagulant in the treatment of public supplies increases the sulfate content and decreases the bicarbonate content of the water.

Chloride (Cl). --Chloride is found in practically all natural waters, although many surface waters contain only a few parts per million. Streams in arid or semiarid regions may contain several hundred parts per million of chloride especially if they drain areas where chlorides occur in natural deposits or have been concentrated in soils through evaporation processes. Sewage increases the chloride content of river waters. Drainage from oil wells or other deep wells, salt springs, and industrial wastes may add large quantities of chloride to stream waters. Most public supplies from surface sources contain less than 25 parts per million of chloride. Ground waters usually contain larger quantities than surface waters and some public-supply wells may contain as much as 100 parts per million. The larger quantities of chloride may affect the industrial use of the water.

Fluoride (F). --Fluoride occurs in nature in fluorspar, cryolite, and in both sedimentary and igneous rocks. In most natural surface waters it is present only in very small concentrations; in ground waters it is present in larger concentrations, in some waters as much as several parts per million. Fluoride in water supplies in relation to the dental defect known as mottled enamel and fluoridation and natural fluorides in relation to the prevention of dental caries is discussed on page 39. The fluoride content of public water supplies may be of little importance as far as the industrial use of the water is concerned.

Nitrate (NO_3) . --Nitrate is considered the final oxidation product of nitrogenous matter and its presence in water supplies of more than several parts per million may indicate previous contamination by sewage or other organic matter. The effect of nitrate present in most public water supplies on the industrial use of the water is practically negligible. Studies indicate that nitrate in excess of about 44 parts per million in drinking water may be a contributing factor or the cause of a condition in infants known as methemoglobinemia ("blue babies"). (Waring, 1949).

Dissolved solids. --The results reported as dissolved solids represent approximately the total quantity of dissolved mineral matter in each water analyzed. (Howard, 1933, p. 4-6). The quantity of dissolved solids in most instances was determined by evaporating a given volume of water, drying the residue at some definite temperature (180°C, by U. S. Geol. Survey), and weighing the dried residue. In some instances the quantity reported was obtained by a summation of the individual constituents shown in the analysis, bicarbonate being included as carbonate. This summation of constituents for dissolved solids is indicated by a footnote in the tables of analyses. Relatively few supplies of places in this report contain more than 500 parts per million of dissolved solids and many of them have less than 100 parts. Ground-water supplies usually contain more dissolved material than surface water supplies. Part of the material reported as dissolved solids in colored waters is organic matter, which is not shown in the analyses.

PROPERTIES AND CHARACTERISTICS OF WATER

<u>Color.</u> --Color, in water analysis, refers to the appearance of water that is free of suspended material. Many turbid waters that appear yellow, red, or brown have little color after the suspended material is removed. Color in natural waters is almost entirely the result of extraction of coloring matter from decaying roots,

stems, leaves, and other organic materials in the water and in the ground. Swamp waters may have as much as 200 or 300 units of color. Industrial wastes may add color to water. Color in most public supplies is rather negligible. A color of less than 10 units usually passes unnoticed. Some impounded supplies if not filtered may have appreciable color. Color is objectionable in the use of the water for some industrial purposes.

Hydrogen-ion concentration. --Hydrogen-ion concentration in an aqueous solution or in water on the pH scale is represented by a number which is the negative logarithm of the hydrogen-ion concentration in moles per liter of solution. The pH range is from 0 to 14. A solution with a pH of 7 is said to be neutral. Progressive values of pH below 7 denote increasing acidity, and progressive values above 7 denote increasing alkalinity. The pH values are logarithmic, for example, a water with a pH of 6 has 10 times the concentration of hydrogen ions as one with a pH of 7.

There is a definite relationship between pH and acidity although acidity should not be confused with pH, for a water with a pH value of 6.0 may have a low total acidity whereas another highly buffered water having a pH of 7 may have a high total acidity. Acidity is the results of the effects of a combination of substances and conditions in water, and may be defined as the power of the water to neutralize hydroxyl ions. Acidity is usually caused by the presence of free carbon dioxide, mineral acids, and salts of strong acids and weak bases.

A definite relationship also exists in waters between pH and alkalinity (carbonate, bicarbonate, and hydroxide). (Langelier, 1946.) Alkalinity in a water may be defined as its power to neutralize hydrogen ions. Alkalinity is caused by the presence of carbonates, bicarbonates, hydroxides and, to a lesser degree, by silicates, phosphates, borates, and organic substances. Although pH values and alkalinity are interrelated, high alkalinity may not be necessarily associated with high pH values; for example, a relative dilute water with a pH of 7 may have a low total alkalinity, whereas, a buffered water with a pH of 6.0 may have a high total alkalinity. The combined effects of the several substances and conditions in the water affect the relationship between alkalinity and pH values.

The pH value of most natural water ranges between 6 and 8. Waters containing free mineral acids have pH values below 4.5. Some ground waters have pH values above 8, some below 6. On account of the relation between the pH of water and its corrosive properties, many water-treatment plants make final adjustment of the pH of the supplies to prevent or minimize corrosion in the distribution system and household installations. The pH values of public supplies have a very considerable and definite bearing on the utility of the supplies for many industrial purposes.

Specific conductance (K \times 106 at 25°C). --The specific conductance of a water is a measure of its capacity to conduct an electric current. The conductance varies with the concentration and degree of ionization of the different minerals in solution and with the temperature of the water. It furnishes a rough measure of the mineral content of the water but does not give any indication of the relative quantities of the constituents in solution. It is useful in following the changes in the total quantity of dissolved minerals in a water through a series of samples.

Turbidity. --Turbidity of water is due to suspended matter such as clay, silt, finely divided organic matter, microscopic organisms, and any such similar material. The terms "turbidity" and "suspended matter" are not synonymous or equivalent expressions. Turbidity is an expression of an optical approximation of the suspended matter, based on the similarity of the interference of the suspended matter to the passage of light rays through a water sample when compared with standard samples of recorded turbidity. The standard unit of turbidity is considered as that produced by one part per million of diatomaceous earth or fuller's earth (silica) in distilled water.

Practically all public supplies that are filtered are free from noticeable turbidity or suspended matter. A few unfiltered supplies and those that contain enough iron to give an appreciable precipitate on exposure to air may show noticeable turbidities. Suspended matter in surface-water supplies is usually a much more variable quantity than dissolved solids and must be taken into consideration in any utilization of the unfiltered supplies.

Temperature. --The results for temperature in the tables of analyses are shown in degrees Fahrenheit and represent the temperature of samples at the time of collection. In a few instances results for temperature are shown that were obtained at the treatment plants.

Corrosiveness, causes and prevention. --Corrosiveness of a water is that property which makes the water aggressive to metal surfaces and frequently results in "red water" caused by solution of iron, although all red-water troubles may not be the result of corrosion. As discussed previously, many well waters contain considerable quantities of iron in solution and when these supplies are exposed to the air the iron separates out as a precipitate. Some of this precipitate may be carried along in the mains and pipes in suspension in the water giving red-water effects. Corrosive waters causes the deterioration of water pipes, steam boilers, and water-heating equipment. Many waters that do not appreciably attack coldwater lines may aggressively attack hot-water lines.

The phenomena of corrosion are not thoroughly understood (Speller, 1951). The active agents in water aside from the solvent action of water itself are acids, substances which upon hydrolysis or decomposition produce acid reactions, carbon dioxide, oxygen, and hydrogen sulfide. The problem of prevention of corrosion, therefore, is the problem of controlling these active agents or minimizing their effects. Books and papers have been written on various aspects of the problem. (Proc. A. S. T. M., 1940; Betz and Betz, 1953).

The principal methods used in the treatment of municipal water supplies to prevent corrosion and red-water trouble involve treatment to maintain proper alkalinity, pH values and stability in the treated waters. (Amer. Water Work Assoc., 1950; Baker, 1948). Effluent from filter plants where alum is used in the treatment, many unfiltered supplies, and some naturally soft supplies, contain free carbon dioxide and have low pH values, may aggressively corrode metal surfaces in distribution mains and plumbing installations, producing red-water troubles, pitting, and tuberculation. To increase the alkalinity and to raise the pH values, agents such as lime or soda ash are added to the supplies before they enter the distribution system. Where the supplies are softened, the alkalinity and residual hardness can be controlled so that the effluent may be left in a slightly unstable condition with respect to calcium carbonate, and a light protective coating of calcium carbonate may be deposited in the mains of the distribution system (Langelier, 1936). A stability test may indicate whether a water is corrosive or will form a protective film (Enslow, 1939).

Deaerators and degasifiers for the removal of dissolved gases are used to some extent in the treatment of boiler feed waters and in private installations (Powell and Burns, 1936; Powell, Bacon, and Lill, 1946). Aeration removes to some extent carbon dioxide and hydrogen sulfide, although in the treatment of public water supplies this process is used more for the purpose of removal of iron and of tastes and odors than for corrosion control.

Phosphates, metaphosphates, and silicates, classed as anodic inhibitors, are used to some extent in the treatment of public supplies and in industrial and private installations for prevention of corrosion. The compounds are effective because not only do they neutralize the agents of corrosion but also, it is thought, they form protective films on the metal surfaces. Sodium hexametaphosphate has been found not only to be effective in stopping corrosion but also to promote removal of corrosion products from pipelines (Rice, 1947).

Corrosion inside of steel tanks and standpipes may be prevented by a process known as cathodic protection. Special electrical equipment is required which in operation reverses the electrochemical processes set up in the corrosion of metal, thereby rendering the metal surface passive (Pallo, 1948).

<u>Hardness.</u> --Hardness of water is that characteristic or quality shown by water containing certain substances in solution. Calcium and magnesium are the principal constituents causing hardness. Other substances, such as aluminum, iron, manganese, strontium, zinc, and free acid also cause hardness, but most of these are not present in water supplies in sufficient quantities to affect appreciably the hardness.

The terms "carbonate" and "noncarbonate" hardness are roughly equivalent to or are used in the same sense as the older terms "temporary" and "permanent"

hardness. Carbonate hardness refers to the hardness in equivalence with carbonate and bicarbonate; noncarbonate hardness to the remainder of the hardness. A water has no noncarbonate hardness if the total hardness does not exceed in chemical equivalence the carbonate and bicarbonate (the alkalinity) present in the water. Waters of high noncarbonate hardness usually contain large quantities of calcium and magnesium sulfates, chlorides, or nitrates in solution. The character of scale formed in steam boilers is affected by the relation of carbonate to noncarbonate hardness. The selection of the proper methods for softening is based largely on the type and degree of hardness present in the waters.

Hardness in water in respect to both domestic and industrial use receives great attention. In domestic use hardness is recognized by the difficulty in obtaining a lather without an excessive consumption of soap; the insoluble, sticky curd that results with the use of soap, and the scale formed in vessels in which the water is boiled. Industry gives great attention to hardness in water supplies because of its effects in the various processes of manufacturing and on the manufactured product, and because of the scale deposited in the use of hard water in hot-water pipes, hotwater heaters, and steam boilers, resulting in economic loss through loss of heat transfer, increased fuel consumption, and breakdown of equipment. Large sums of money are expended in softening supplies to make them suitable for both domestic and industrial uses.

HARDNESS OF PUBLIC WATER SUPPLIES

Data relating to the hardness of the water of the larger public supplies of the United States as shown in the descriptive and analytical data for each place are summarized in a number of tables and illustrations. Most of these data relate to the supplies as served to consumers representing water of natural hardness and water of which the hardness has been changed by treatment including softening. The data shown relate to only 58.8 percent of the total population of the United States. The percent of population represented by each of more than half of the States is much less than the total for the whole country. Furthermore, in several of the summaries the average hardness of the State is used which does not show any extremes in the hardness of the supplies within the State. The extremes in the hardness of the supplies in some States are much greater than in others, although the average hardness for those States may not be any higher than for a State where the ranges in the hardness are not so great. Furthermore, it must be borne in mind that the smaller municipalities, which are not represented in the report and consequently are not in the summaries, obtain their supplies for the most part from ground-water sources whose supplies generally are harder than surface waters. Therefore, it is important that the base data of these summaries be kept in mind when making any conclusions or inferences relative to the distribution of water of certain hardness as shown by the hardness of the larger public water supplies of the country.

These summaries of data on hardness are based on the average hardness of a supply for a year. In some instances only meager analytical data were available to show the hardness of the supply for a year. In these instances an average for hardness was selected, based on known factors, such as the sources of the supply whether from a large or a small stream, or from lakes, reservoirs, wells, or springs, the time of year the sample or samples for analysis were collected, and the general knowledge of the hardness of water supplies in the locale of the supply in question. The average hardness used for many places with varying hardness was that furnished by the waterworks laboratories. The average hardness of those places furnished from more than one source where not mixed prior to distribution was based on the hardness of the supplies and the percent furnished from each source. In some instances the total population of a place was divided according to the percent of supply from each source so that the proper tabulation could be made as to population and hardness. For those places furnished with ground water from several sources of supply with different hardness, proper evaluation for an average hardness was based on the percent of supply from each source and the hardness of each supply. For a few places furnished with both ground and surface water, the population using each had to be estimated in the tabulations where division was necessary.

RANGES IN HARDNESS

Table 2 shows the number of persons, in thousands using water of different ranges of hardness from larger public supplies in the United States. It gives no information as to the distribution of hard water by area or locality. The table is reasonably accurate as to the use of water in different ranges of hardness by the consumers indicated, which represent about 90 percent of the total urban population of the United States.

Table 2. --Number of persons using water in different ranges of hardness from public supplies for 1,315 of the larger cities in the United States, 1952.

	Population (thousands)								
	Surface water	Ground water	Mixed supplies	Total	Accumulative total				
1-10	1,344	434	109	1,887	1,887				
11-20	5,673	397	219	6,289	8,176				
21-30	11,632	471	252	12,355	20,531				
31-40	3,680	706	297	4,683	25,214				
41-50	2,482	550	353	3,385	28,599				
51-60	3,709	910	222	4,841	33,440				
61-80	4,794	647	1,097	6,538	39,978				
81-100	9,561	1,482	1,067	12,110	52,088				
101-120	5,524	1,075	602	7,201	59,289				
121-140	12,266	550	2,863	15,679	74,968				
141-160	831	1,253	247	2,331	77, 299				
161-180	3 55	312	385	1,052	78,351				
181-200	358	304	681	1,343	79,694				
201-250	977	1,707	125	2,809	82,503				
251-300	935	1,142	3 88	2,465	84,968				
301-350	185	706	176	1,067	86,035				
351-400	12	848		860	86,895				
401-450		516		516	87,411				
451-500	10	200		210	87,621				
501-550		26		26	87,647				
551-600		85	4	89	87,736				
601-650		40		40	87,776				
651-700	16	34		50	87,826				

The table is not necessarily accurate as to the use of water in different ranges of hardness by the total population of the United States, because only 58.3 percent of the total population is represented and the supplies are treated supplies, many of which are softened. The significant things to note about the table are the relative proportion of numbers of people using water in the lower ranges from surface-water sources and from ground-water sources and how this proportion changes with respect to the supplies in the upper ranges of hardness. The proportions of users of surface water and ground water for the total population of the country probably are very different from the proportions here shown for the users of the larger public supplies.

The data for hardness summarized in table 2 are further summarized in tables 3 and 4. Table 4 is similar to table 3 with the exception that the mixed supplies shown intable 3 have been separated into surface-water and ground-water supplies according to the percentage of supply from each source and the average hardness of each supply. The number of ranges for hardness in these two tables has been decreased from 23 shown in table 2 to four. It is significant that a large population is served with water in the range of hardness from 1 to 60 parts per million,

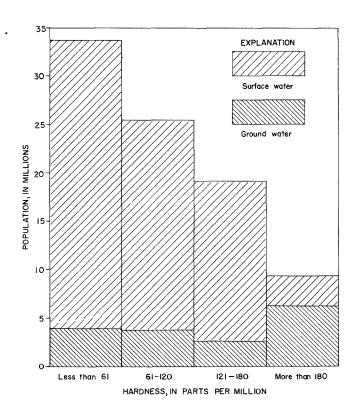

and in the ranges of hardness above 120 parts per million, ranges where softening is profitable and necessary for many domestic and industrial uses. These data are shown graphically on figure 1.

Table 3. --Number of persons using water in four ranges of hardness from public supplies, including mixed supplies, for 1,315 of the larger cities in the United States, 1952

	Population (thousands)							
Range in hardness (ppm)	Surface water	Ground water	mixed supplies	Total				
1-60	19,879 13,452	3,468 3,204 2,115 5,608	2,766 3,495	33,440 25,849 19,062 9,475				
	64,344	14,395	9,087	87,826				

Table 4. --Number of persons using water in four ranges of hardness from public supplies for 1,315 of the larger cities in the United States, 1952

Range in hardness	Population (thousands)					
(ppm)	Surface water	Ground water	Total			
1-60	29,776	3,987	33,763			
31-120		3,761	25,488			
[21-180	16,529	2,667	19, 196			
180+		6,458	9, 379			
	70,953	16,873	87,826			

WEIGHTED AVERAGE HARDNESS

The data for hardness of the larger public water supplies of the United States are summarized in a different way in table 5. This table shows the weighted average hardness of both surface-water supplies and ground-water supplies, and both supplies combined for each State. To calculate the weighted-average hardness for the surface-water supplies of a State, the average hardness of each surface-water supply was multiplied by the population served by that supply; the sum of the products thus obtained was then divided by the total number of people served by the surface-water supplies. The weighted-average hardness for the ground-water supplies was obtained in the same way. Then the weighted average hardness for all supplies for the State was obtained by dividing the total of allthe products by the total population served in the State. Thus the weighted average hardness of all supplies of a State represents the average hardness of each supply weighted according to the population served by that supply.

The data thus summarized in table 5 gives valuable information as to the distribution of hard water not so much within each State but for all the States. In some States the range in hardness of the supplies is not large, whereas in others the range is considerable. No supply in the State of Connecticut included in the report had a hardness of more than 60 parts per million. Only one place from each of the States of Maine, New Hampshire, Oregon, and Rhode Island, had a hardness of more than 60 parts per million. For a few States the range in hardness for the supplies extended from not less than 80 parts to well over 500 parts. The range in hardness of the supplies for the places in Texas is from 4 to 700 parts.

The weighted average hardness of the supplies for the States, Illinois, Indiana, Michigan, Minnesota, New York, Ohio, and Wisconsin, bordering on the Great Lakes is influenced by the hardness of the supplies taken from these lakes. The weighted-average hardness for each of these States except New York is decreased by the weighted average hardness of the supplies taken from the Great Lakes. The weighted average hardness of the supplies in Illinois, Michigan, and Wisconsin are influenced more than in the other States, because about 50 percent of the population of Illinois and Michigan and about 30 percent of the population of Wisconsin are represented by the population of the places included in this report. The weighted average of the supplies not taken from the lakes in these three States is much higher than the weighted average for the whole State and is probably much nearer the average of the supplies not included in the report.

The weighted average hardness for New York State is increased by the hardness of the supplies from lakes Erie and Huron, although the weighted average for the whole State is influenced more by the supply of New York City than all other supplies in the State combined that are included in the report. No other supplies in the whole country influence the weighted-average hardness of the State as much as the supplies for New York City and Chicago influence the weighted average for New York and Illinois. Data on the weighted-average hardness for the States named above are summarized in tables 6 and 7 for both finished and raw water.

Table 5 . -- Weighted average hardness of finished water from large public supplies in each State, 1952

Table 5 Weighted							supplies in each State, 1952			
	Surface supplies			Gro	ound supp	lies	All supplies			
	Population served			** 3	Population served			Population served		
	Hard-		Percent	Hard- ness		Percent	Hard- ness		Percent	
State	ness as	Thou-	of popu-	as	Thou-	of popu-	as	Thou-	of popu-	
State	CaCO.	sands	lation of	CaCO.	sands	lation of	CaCO,	sands	lation of	
	(ppm)		State	(ppm)		State	(ppm)		State	
Alabama	52	878	28.7	68	271	8.8	55	1,149	37.5	
Arizona	200	167	22.2	225	271	36.2	216	438	58.4	
Arkansas	36	355	18.6	54	187	9.8	42	542	28.4	
California	107	7,962	75.2	164	1,945	18.4	118	9,907	93.6	
Colorado	107	754	56.9				107	754	56.9	
Connecticut	29	1,481	73.7	42	23	1.2	29	1,504	74.9	
Delaware	53	128	40.3	81	44	13.7	60	172	54.0	
District of Columbia	96	803	100	127	1,218	44.0	96 123	803	100 53.4	
Florida	104 24	262	9.4 35.9	114	294	8.6	41	1,480 1,531	44.5	
Idaho	92	1,237 84	14.3	135	142	24.2	119	226	38.5	
Illinois	135	4,901	56.3	348	549	6.3	156	5,450	62.6	
Indiana	194	1,310	33.3	334	571	14.5	237	1,881	47.8	
Iowa	138	429	16.3	265	592	22.6	212	1,021	38.9	
Kansas	163	423	22.2	190	380	20.0	176	803	42.2	
Kentucky	101	916	31.1	108	47	1.6	102	963	32.7	
Louisiana	72	871	32.4	57	332	12.4	68	1,203	44.8	
Maine	20	388	42.4	22	23	2.5	20	411	44.9	
Maryland	48	1,677	71.6	27	34	1.4	48	1,711	73.0	
Massachusetts	20	3,314	70. 7	54	330	7.0	23	3,644	77.7	
Michigan	100	3,359	52.7	218	510	8.0	115	3,869	60.7	
Minnesota	74	1,012	33.9	261	282	9.5	114	1,294	43.4	
Mississippi	73	161	7.4 53.0	24 184	36 ¹ 157	16.6 4.0	39 106	522 2,256	24.0 57.0	
Montana	100 100	2,099 205	34.8	226	39	6.6	120	2,230	41.4	
Nebraska	261	264	19.9	232	247	18.7	247	511	38.6	
Nevada	79	54	33.5	204	42	26.5	135	96	60.0	
New Hampshire	16	194	36.3	56	83	15.6	28	277	51.9	
New Jersey	54	2,886	59.7	135	988	20.4	75	3,874	80.1	
New Mexico	73	50	7.4	274	222	32.6	237	272	40.0	
New York	46	10,660	71.8	112	1,122	7.6	52	11,782	79.4	
North Carolina	33	1,194	29.4	66	57	1.4	34	1,251	30.8	
North Dakota	111	104	16.8	296	49	7.9	170	153	24.7	
Ohio	120	3,952	49.7	284	899	11.3	150	4,851	61.0	
Oklahoma	119	774	34.6	163	122	5.5	125 17	896 758	40.1 49.8	
Oregon	14 84	644	42.3 60.9	37 128	114 320	7.5 3.0	86	6,707	63.9	
Pennsylvania	33	6,387 672	84.9	26	320 42	5.2	32	714	90.1	
South Carolina	17	615	29.1	25	125	5.9	18	740	35.0	
South Dakota	136	67	10.2	394	114	17.5	299	181	27.7	
Tennessee	84	790	24.0	50	543	16.5	70	1,333	40.5	
Texas	120	1,971	25.6	143	1,890	24.5	132	3,861	50.1	
Utah	171	194	28.2	212	179	25.9	191	373	. 54.1	
Vermont	52	103	27.2	59	21	5.6	53	124	32.8	
Virginia	60	1,466	44.2	151	93	2.8	65	1,559	47.0	
Washington	22	1,029	43.2	118	308	13.0	44	1,337	56.2	
West Virginia	71	541	27.0	170	108	5.4	88	649	32.4	
Wisconsin	128	1,095	31.9	250	519	15.1	167	1,614	47.0	
Wyoming	123	71	24.3	223	64	22.3	171	135	46.6	
United States	82	70,953	47.1	162	16,873	11.2	97	87,826	58.3	

Table 6. --Weighted average hardness of finished water from large public supplies of States bordering the Great Lakes, 1952

the Great Lakes, 1932										
	Sur	face sup	plies	Gr	ound supp	lies	All supplies			
	Hard-	Populati	on served	Hard-	lard- Population served			Hard- Population served		
	ness as CaCO ₃ (ppm)	Thou- sands	Percent of popu- lation of State	ness as CaCO ₃ (ppm)	Thou- sands	Percent of popu- lation of State	ness as CaCO ₃ (ppm)	Thou- sands	Percent of popu- lation of State	
	W P /		State	(PP111)		State	(PP-117)	ļ	State	
Illinois: Supplied from Lake Michigan Remainder of State. Whole State	133 143 135	645	48. 9 7. 4 56. 3	348 348	549 549	6. 3 6. 3	133 237 156	4,256 1,194 5,450	48.9 13.7 62.6	
Indiana: Supplied from Lake Michigan Remainder of State Whole State	136 213 194	984	8.3 25.0 33.3	334 334	571 571	14. 5 14. 5	136 258 237	326 1,555 1,881	8.3 29.5 47.8	
Michigan: Supplied from Great Lakes Remainder of State Whole State	100 89 100	201	49. 5 3. 2 52. 7	218 218	510 510	8. 0 8. 0	100 182 115	3,158 711 3,869	49.5 11.2 60.7	
Minnesota: Supplied from Lake Superior Remainder of State Whole State	46 77 74	107 905 1,012	3.6 30.3 33.9	261 261	282 282	9. 5 9. 5	46 121 114	107 1,197 1,294	3.6 39.8 43.4	
New York: Supplied from Great Lakes New York City Remainder of State Whole State	125 30 70 46	1,896	6.5 52.6 12.7 71.8	143 87 112	500 622 1,122	3.4 4.2 7.6	125 37 75 52	964 8,300 2,518 11,782	6.5 56.0 16.9 79.4	
Ohio: Supplied from Lake Erie Remainder of State. Whole State	130 111 120	1,901 2,051 3,952	23.9 25.8 49.7	284 284	900 900	11.3 11.3	130 164 150	1,901 2,950 4,851	23.9 37.1 61.0	
Wisconsin: Supplied from Lake Michigan Remainder of State. Whole State	128 120 128	1,006 89 1,095	29.3 2.6 31.9	250 250	519 519	15. 1 15. 1	128 231 167	1,006 608 1,614	29.3 17.7 47.0	

Table 7.--Weighted average hardness of raw water from large public supplies of States pordering the the Great Lakes, 1952

	-		me Great	Lakes,	1952				
1	Surface supplies			Ground supplies			All supplies		
	Hard-	Population served		Hard-	Population served		Hard-	Population served	
	ness as CaCO ₃ (ppm)	Thou- sands	Percent of popu- lation of State		Thou- sands	Percent of popu- lation of State	ness as CaCO ₃ (ppm)	Thou- sands	Percent of popu- lation of State
Illinois: Supplied from Lake Michigan Remainder of State Whole State	131 177 137	4,256 646 4,902	48. 9 7. 4 56. 3	384 384	549 549	6. 3 6. 3	131 272 162	4,256 1,194 5,450	13.7
Indiana: Supplied from Lake Michigan Remainder of State Whole State	135 230 206	984	8.3 25.0 33.3	354 354	571 571	14.5 14.5	135 275 251	326 1,555 1,881	39.5
Michigan: Supplied from Great Lakes Remainder of State Whole State	103 278 113	201	49. 5 3. 2 52. 7	314 314	510 510	8. 0 8. 0	103 304 140	3,158 711 3,869	11.2

Table 7Weighted average hardness of raw water from large public supplies of States bordering ti	he
the Great Lakes, 1952Continued	

					1					
	Surface supplies				Ground supplies			All supplies		
	Hard-	Population served		Hard-	Population served		Hard-	Population served		
	ness as CaCO ₃ (ppm)	Thou- sands	Percent of popu- lation of State	ness	Thou- sands	Percent of popu- lation of State	ness as CaCO ₃ (ppm)	Thou- sands	Percent of popu- lation of State	
Minnesota: Supplied from Lake Superior Remainder of State Whole State	44 162 150		3.6 30.3 33.9	275 275	282 282	9. 5 9. 5	44 188 177	107 1,187 1,294		
New York: Supplied from Great Lakes New York City Remainder of State Whole State	124 30 71 46	7,800 1,895	6.5 52.6 12.7 71.8	143 87 112	500 622 1,122	3.4 4.2 7.6	124 37 75 52	964 8,300 2,518 11,782	16.9	
Ohio: Supplied from Lake Erie Remainder of State Whole State	128 149 139	2,051	23.9 25.8 49.7	358 358	 899 899	11.3 11.3	128 213 179	1,901 2,950 4,851		
Wisconsin: Supplied from Lake Michigan Remainder of State Whole State	129 172 132	89	29.3 2.6 31.9	253 253	519 519	15. 1 15. 1	129 241 171	1,006 608 1,614	17.7	

The weighted average hardness for the supplies of 670 places in the United States in Water-Supply Paper 658 in 1932 was 102 parts per million; for the supplies in 1,315 places in this report, it is 97 parts. This difference of 5 parts in the hardness may seem difficult to explain when it is realized that the supplies of the more than 600 places included in this report and not included in the report in 1932, are comparatively small places and many obtain their supplies from ground water which has a much higher average hardness generally than surface waters. This decrease in the hardness is readily explained by changes in the sources of supply to water of lower hardness affecting a rather large part of the population, and by an increase, in practice, of softening of supplies. Some of the places where changes in the hardness of the supplies have been effected are Little Rock, Flint, Minneapolis, St. Paul, Kansas City (Mo.), Oklahoma City, Toledo, Wichita, and the metropolitan area of Southern California. In 1932 the number of places with softened supplies was 40; in this report of the same 670 places mentioned in Water-Supply Paper 658 the number of places with softened supplies is 85.

The weighted average hardness for the surface-water supplies in the report in 1932 was 85 parts per million; in this report it is 82 parts. The weighted average hardnesses for the ground-water supplies are 191 and 162 parts per million respectively. The decreases in the weighted average hardness of both surface and ground-water supplies are explained as above for the decrease in the weighted average for all the supplies for the country. Although the decrease in hardness of the ground-water supplies is much greater than in the surface-water supplies, this decrease has less weight in decreasing the weighted average for all supplies than the decrease in the surface supplies because the ground-water supplies represent only 11.2 percent of the total population, the surface supplies, 47.1 percent.

Data on weighted average hardness for the raw-water supplies are shown in table 8 in the same manner as they are shown in table 5 for the water supplies as served to the consumers. Average-hardness values for the raw supplies were obtained in the same manner as for the supplies as served to the consumers, although more estimates were made for the raw water averages of the individual supplies

than for the finished water supplies.

An examination of the tables shows the weighted average hardness of the rawwater supplies for the United States to be 116 parts per million as compared to 97 parts for the finished-water supplies; 96 parts for raw surface-water supplies as compared to 82 parts for the finished surface-water supplies; and 200 parts for the raw ground-water supplies as compared to 162 parts for the finished ground-water supplies.

Table 8. --Weighted average hardness of raw water from large public supplies in each State, 1952

Table 8 weighted				vater from targe public supplies in each state, 1952					
	Surface supplies			Ground supplies			All supplies		
	Hard-	Populati	on served	Hard-	Population	on served	Hard-	Populatio	nserved
State	ness		Percent	ness	l	Percent	ness	l	Percent.
State	as	Thou-	of popu-	as	Thou-	of popu-	as	Thou-	of popu-
	CaCO.	sands	lation of	CaCO.	sands	lation of	CaCO,	sands	lation of
	(ppm)		State	(ppm)	•	State	(ppm)		State
Alabama	40	878	28.7	67	271	8.8	47	1,149	37.5
Arizona	200	167	22.2	225	271	36.2	215	438	58.4
Arkansas	23	355	18.6	60	187	9.8	36	542	28.4
California	184	7,962	75.2	206	1,945	18.4	188	9,907	93.6
Colorado	110	754	56.9				110	754	56.9
Connecticut	27	1,481	73.7	42	23	1.2	27	1,504	74.9
Delaware	55	128	40.3	56	44	13.7	55	172	54.0
District of Columbia	84	803	100				84	803	100
Florida	95	262	9.4	242	1,218	44.0	216	1,480	53.4
Jeorgia	15 90	1,237	35.9	167	294 142	8.6 24.2	119	1,531 226	44.5 38.5
IdahoIllinois	137	84 4,901	14.3 56.3	135 384	549	6.3	162	5,450	62.6
Indiana	206	1,310	33.3	354	571	14.5	251	1,881	47.8
Iowa	210	429	16.3	342	592	22.6	286	1,021	38.9
Kansas	221	423	22.2	271	380	20.0	245	803	42.2
Kentucky	107	916	31.1	291	47	1.6	116	963	32.7
Louisiana	108	871	32.4	84	332	12.4	101	1,203	44.8
Maine	18	388	42,4	22	23	2.5	18	411	44.9
Maryland	38	1,677	71.6	27	34	1.4	38	1,711	73.0
Massachusetts	19	3,314	70.7	53	330	7.0	22	3,644	77.7
Michigan	113	3,359	52.7	314	510	8.0	140	3,869	60.7
Minnesota	150	1,012	33.9	275	282	9.5	177	1,294	43.4
Mississippi	56	161	7.4	20	361	16.6	31	522	24.0
Missouri	126	2,099	53.0	228	157	4.0	133	2,256	57.0
Montana	101	205	34.8	224	39	6.6	121	244	41.4
Nebraska	261 101	264 54	19.9	239 204	247 42	18.7 26.5	250 147	511 96	38.6 60.0
New Hampshire	16	194	33.5 36.3	204 58	83	15.6	29	277	51.9
New Jersey	51	2,886	59.7	137	988	20.4	73	3,874	80.1
New Mexico	76	50	7.4	282	222	32.6	244	272	40.0
New York	46	10,660	71.8	112	1,122	7.6	52	11,782	79.4
North Carolina	23	1,194	29.4	123	57	1.4	28	1,251	30.8
North Dakota	255	104	16.8	345	49	7.9	283	153	24.7
Ohio	139	3,952	49.7	358	899	11.3	179	4,851	61.0
Oklahoma	150	774	34.6	224	122	5.5	160	896	40.1
Oregon	13	644	42.3	37	114	7.5	15	758	49.8
Pennsylvania	86	6,387	60.9	200	320	3.0	91	6,707	63.9
Rhode Island	21	672	84.9	25	42	5.3	21	714	90.1
South Carolina	17	615	29.1	23	125	5.9	18	740	35.0
South Dakota	253	67	10.2	426	114	17.5	362	181	27.7
Tennessee	77	790	24.0	49	543	16.5	66	1,333	40.5
Texas	162 171	1,971	25.6	144	1,890	24.5	153 191	3,861 373	50.1 54.1
Utah Vermont	52	194 103	28.2 27.2	212 59	179 21	25.9 5.6	53	124	32.8
Virginia	48	1,466	44.2	157	93	2.8	54	1,559	47.0
Washington	24	1,029	43.2	118	308	13.0	45	1,337	56.2
West Virginia	66	541	27.0	185	108	5.4	86	649	32.4
Wisconsin	132	1,095	31.9	253	519	15.1	171	1,614	47.0
Wyoming	114	71	24.3	233	64	22.3	171	.135	46.6
United States	96	70,953	47.1	200	16,873	11.2	116	87,826	58.3
		,	****	200				5.,020	

Further examination of the tables shows that for six States the hardness reported for the raw-water supplies is the same as for the finished-water supplies. For 17 States where soft water supplies are generally found the weighted average hardness of the raw-water supplies is less than the finished-water supplies, indicating the addition of lime in the treatment of the raw-water supplies for pH adjustment and corrosion control; and for 19 States where hard-water supplies are more general, the hardness of the raw-water supplies is considerably higher than the finished-water supplies, indicating that softening was part of the treatment of the raw-water supplies in those areas.

The data on weighted average hardness in table 5 are further summarized on plate 1 and table 8 on plate 2. The States are separated into four groups according to the weighted average hardness of the supplies of each State and are shown on the maps by shaded patterns representing the four groups or ranges of hardness. These maps of weighted-average hardness of supplies by States have definite limitations, but they show, in a general way, the areas where water in definite ranges of hardness is found. It is obvious that hardness of water supplies does not follow State lines; moreover, each State, with one exception, has supplies with hardness that exceed the limits of the ranges of hardness for the particular group into which it falls. The map for the weighted average hardness of the rau-water supplies more nearly represents the average hardness of the natural waters than the map for the weighted average hardness of the finished-water supplies.

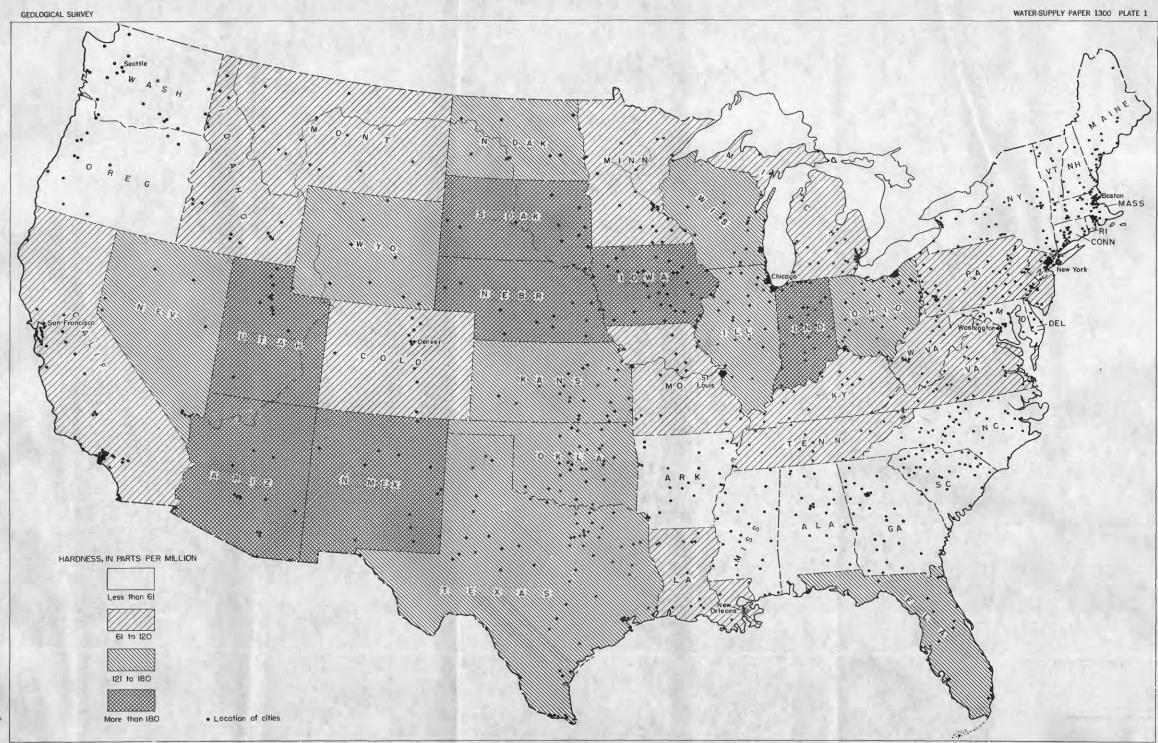
The classification of water supplies as soft, moderately hard, hard, and very hard is rather unsatisfactory even where the domestic use of the water is concerned, and much more so with respect to the industrial use of the water. Water with a hardness of 100 parts per million may be called a soft water by one accustomed to using a water with 300 or 400 parts of hardness, whereas, one accustomed to using a water with less than 50 parts hardness may call water with a hardness of 100 parts rather hard. A water with a hardness of 100 parts is not soft in terms of soap consumption in cleansing, washing, and laundering operations. About 60 percent of the population of the places in this report are furnished with water having a hardness of 100 parts per million or less. (See table 9 and plate 3.)

Table 9. --Population served, and the percent of population served with water from public supplies having hardness of 100 parts per million or less for 1,315 of the larger cities in the United States, 1952

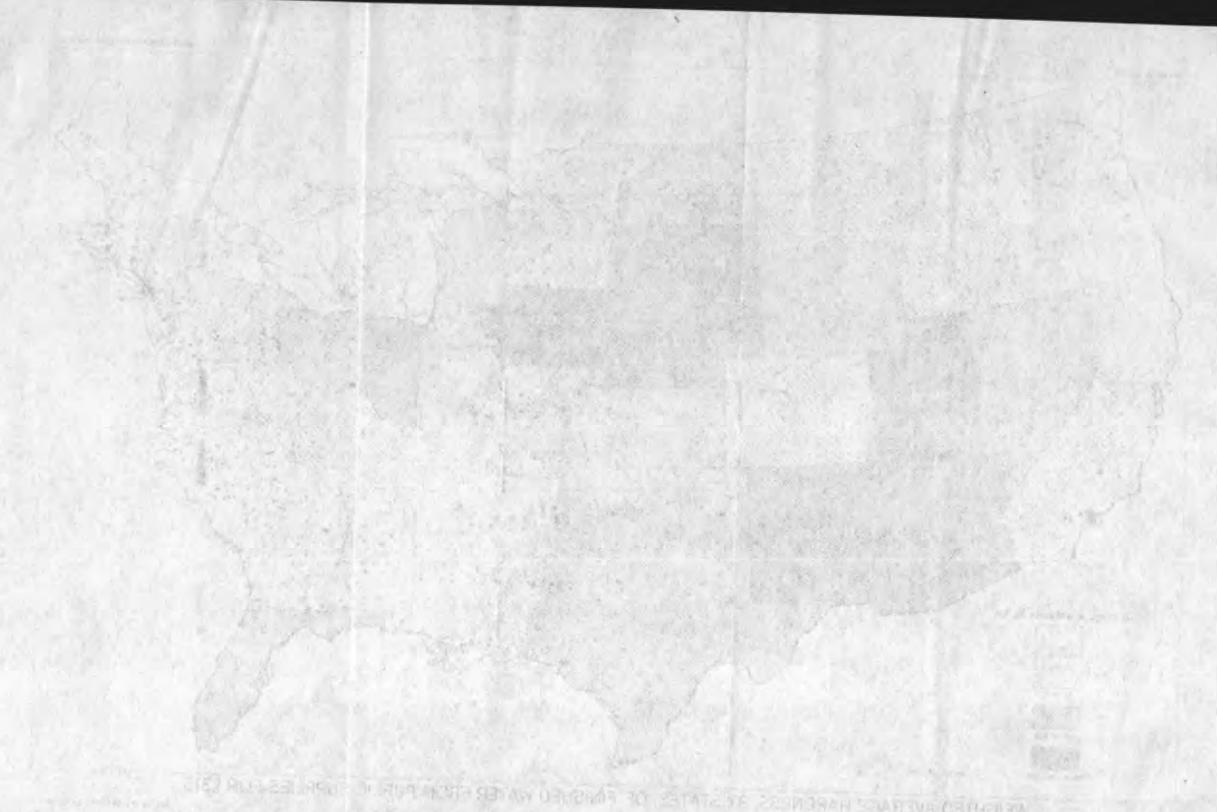
State	Population served (thousands)	Percent	State	Population served (thousands)	Percent
Alabama	1,065	92.7	Nebraska	0	0
Arizona	32	7.3	Nevada	44	45.8
Arkansas	509	93.9	New Hampshire	252	91.0
California	2,643	26.7	New Jersey	2,686	69.3
Colorado	183	24.3	New Mexico	35	12.9
Connecticut	1,504	100	New York	10, 187	86. 5
Delaware	155	90.1	North Carolina	1,236	98.8
District of Columbia	803	100	North Dakota	46	30.1
Florida	857	57.9	Ohio	957	19.7
Georgia	1,382	90.3	Oklahoma	638	71.2
Idaho	140	61.9	Oregon	758	100
Illinois	215	3.9	Pennsylvania	3,580	53.4
Indiana	135	7.2	Rhode Island	714	100
Iowa	396	38.8	South Carolina	731	98.8
Kansas	155	19.3	South Dakota	33	18.2
Kentucky	627	65.1	Tennessee	1,064	79.8
Louisiana	1,133	94.2	Texas	2,012	52. 1
Maine	411	100	Utah	0	0
Maryland	1,711	100	Vermont	112	90. 3
Massachusetts	3,644	100	Virginia	1,524	97.8
Michigan	3,078	79.6	Washington	1,135	84.9
Minnesota		78.2	West Virginia	473	72.9
Mississippi		90.4	Wisconsin	133	8. 2
Missouri	1,594	70.7	Wyoming	61	45.2
Montana	111	45.5	Total	52,378	59.6

The limitations of quality with respect to the hardness of water supplies for industrial use are so varied that any general classification would not be feasible or satisfactory. A supply with a hardness of 60 parts per million may be satisfactory for one or several industries and not satisfactory for others. The grouping of the supplies in this report into four groups or ranges of hardness follows the pattern used in Water-Supply Paper 658 and is convenient for comparison; the grouping does not fit any industrial classification. Some other grouping may be more practical or satisfactory than the above.

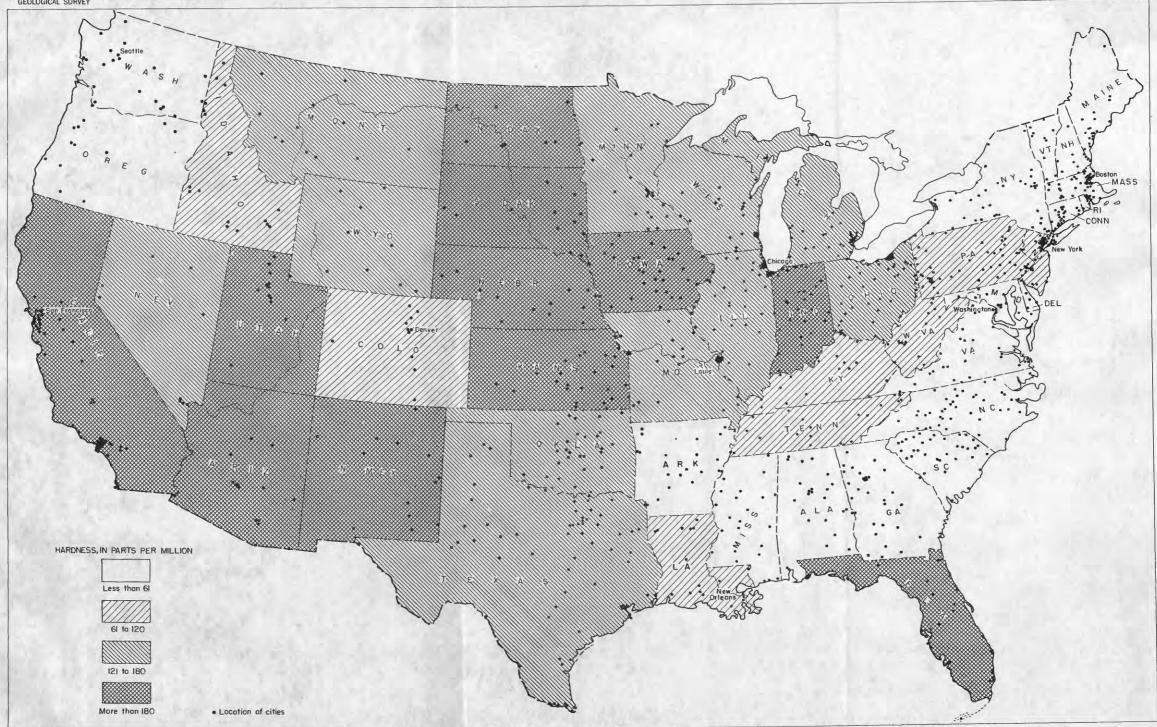
For the finished-water supplies 17 States fall into the first group, 1 to 60 parts per million of hardness; 14 States and the District of Columbia fall into the second group, 61 to 120 parts of hardness; 10 States fall into the third group, 121 to 180 parts of hardness; and 7 States fall into the group, above 180 parts of hardness. In the second group 3 States (California, Idaho, and Montana) have weighted-average hardnesses near the maximum for the group, and a total of 9 States and the District of Columbia have weighted average hardnesses above 90 parts. In the third group 4 States (Kansas, North Dakota, Wisconsin, and Wyoming) have weighted average hardnesses around 170 parts or near the upper range of hardness for the group.


For the raw-water supplies, the States fall into the four groups as follows: 18 States in the first group; 8 States and the District of Columbia in the second group; 11 States in the third group; and 11 States in the last group. The significant fact in this grouping of the States according to the weighted average hardness of the finished-water supplies and the raw-water supplies is the difference in the number of States falling into the second and last groups. Supplies that have been softened generally fall in with the group with 61 to 120 parts of hardness, and raw-water supplies most likely to be softened fall in the third and last groups. This difference in the number of States in the second group has been the result of softening of supplies with hardness not only above 180 parts but also those with hardness in the upper ranges of the third group.

AVERAGE HARDNESS


Further summaries of data on the hardness of the finished-water supplies for the places in this report are shown in table 10 and plate 4. Table 10 shows the average hardness of both finished surface-water and ground-water supplies and also of both supplies combined for each State, based on the number of supplies shown in the table for each State. It is realized that for some of the States the averages are based on too few or insufficient data--for example, no ground-water supplies are included in the average for Colorado, and only one surface supply is included in the average for Nebraska.

These arithmetical averages for the States as a whole are slightly higher than the weighted average hardness, for a small place has the same weight as a large place in the arithmetical averages and the larger places in many States are the ones that have the softer supplies or receive softened supplies, and consequently have more weight in a weighted average. The average hardness for the United States is 121 parts compared to 97 parts for the weighted average.


The grouping of the States for plate 4 according to the four ranges of hardness differs considerably from the grouping for plate 1 of weighted averages. The number of States in the group of 1 to 60 parts per million of hardness and the group of above 180 parts for plate 4 is 12 and 13, respectively, as compared to 17 and 7 for plate 1. The number of States in the other two groups is about the same, but the States making up the groups are different.

WEIGHTED AVERAGE HARDNESS, BY STATES, OF FINISHED WATER FROM PUBLIC SUPPLIES FOR 1,315
OF THE LARGER CITIES IN THE UNITED STATES, 1952

CIEZ ROLESTINGO DE RUP INCREA SENAN O RICHER TO CATATE DE RESIDENTA PUR DE MARENA CERTADAN. TREESTAND CONTROL OF THE CAROLE OF SECURITIES AND THE SECURITIES AND T

WEIGHTED AVERAGE HARDNESS, BY STATES, OF RAW WATER FROM PUBLIC SUPPLIES FOR 1,315 OF THE LARGER CITIES IN THE UNITED STATES, 1952

WATER-SUPPLY PAPER 1300 PLATE 3 GEOLOGICAL SURVEY 30 ans PERCENT OF POPULATION Less than 26 percent 26 to 50 percen 51 to 75 percent

More than 75 percent

· Lacation of cities

PERCENTING PROTON AND SELECTATES. SERVED BY AND STORY SERVED WATER RINGS, STORY WITH SERVED S

Table 10. --Number of supplies, and average hardness, by States, of finished water for 1,315 of the larger cities of the United States, 1952

Water	101 1,010	of the larg		or the onite		1002
	Surface	supplies	Ground	l supplies	Alls	supplies
State		77		IId		Handmaga
	.	Hardness	NT	Hardness	Nonellan	Hardness
	Number	as CaCO ₃	Number	as CaCO ₃	Number	as CaCO ₃
		(ppm)		(ppm)		(ppm)
Alabama	15	46	8	70	23	54
Arizona	5	186	20	215	25	210
Arkansas	13	51	15	70	2 8	61
California	29	132	57	176	86	161
Colorado	12	106			12	106
Connecticut	20	29	3	42	23	30
Delaware	2	61	7	76	9	74
District of						ļ
Columbia	1	96			1	96
Florida	5	90	24	112	29	108
Georgia	16	31	17	114	33	75
Idaho	7	6 8	11	172	18	132
Illinois	20	133	14	324	34	212
Indiana	15	182	20	33 8	35	271
Iowa	13	140	24	274	37	227
Kansas	13	134	15	229	28	185
Kentucky	18	97	3	1 2 8	21	101
Louisiana	6	70	11	60	17	64
Maine	13	23	2	42	15	23
Maryland	9	44	2	26	11	40
Massachusetts	33	28	14	56	47	36
Michigan	19	107	14	216	33	153
Minnesota	5	78	18	2 65	23	224
Mississippi	3	81	20	2 8	23	35
Missouri	16	125	7	173	23	140
Montana	10	90	6	202	16	132
Nebraska	1	261	12	253	13	254
Nevada	4	132	6	168	10	154
New Hampshire	7	17	4	50	11	30
New Jersey	18	58	22	104	40	8 3
New Mexico	3	87	11	321	14	271
New York	44	77	19	104	63	85
North Carolina	3 8	35	4	76	42	39
North Dakota	6	1 2 8	5	27 5	11	195
Ohio	26	123	16	202	42	153
Oklahoma	20	174	8	156	2 8	169
Oregon	11	2 8	4	50	15	34
Pennsylvania	54	71	11	127	65	80
Rhode Island	8	3 8	4	2 8	12	34
South Carolina	21	23	14	22	35	22
South Dakota	5	154	8	379	13	292
Tennessee	13	89	9	86	22	88
Texas	34	162	46	125	80	140
Utah	3	196	12	222	15	217
Vermont	8	57	4	79	12	64
Virginia	25	49	7	140	32	69
Washington	14	32	9	8 2	23	53
West Virginia	16	71	5	168	21	94
Wisconsin	9	120	15	240	24	195
Wyoming	6	195	7	22 5	13	211
United States	712	85	594	164	1,306	121

Further data on average hardness of the raw-water supplies of places in this report are shown in table 11 and plate 5. The results for average hardness of the raw-water supplies in table 11 were obtained in the same manner as for table 10 of the finished-water supplies. The averages for some of the States in table 10 differ only to a small degree, being either higher or lower, from the weighted averages of the raw-water supplies as shown in table 8, whereas for other States the two averages differ considerably. The average hardness for the United States is 139 parts as compared to 116 parts for the weighted average.

The arrangement of the States into the four groups, according to the ranges of average hardness as shown in plate 5, differs considerably as to the number falling into each group and as to the States making up each group, from the groupings made according to the weighted average hardness as shown on plate 2. The greatest difference as to number of States is in the two groups of the higher ranges of hardness, 121 to 180 parts and above 180 parts, respectively. In these two groups there are 4 States and 19 States respectively, as compared to 11 and 11 in the same groups for plate 2.

The data on hardness as summarized in table 11 and plate 5 when compared with those summarized in table 10 plate 4 also reveal important difference in the values for average hardness of the raw and finished supplies of the individual States and the grouping of the States into the four groups or ranges of hardness. The data as summarized in table 11 and plate 5 give more nearly accurate information as to the average hardness of the natural waters of the States than the data on average hardness weighted according to population or changed by reason of the treatment of the supplies, summarized in the preceding tables and illustrations. Plate 5 is a reasonably accurate representation of the areas of soft and hard waters in the United States.

Table 11. --Number of supplies, and average hardness, by States, of raw water for 1.315 of the larger cities in the United States. 1952

	or the	e larger cu	ies in the	United Stat	es, 1952	
	Surface	supplies	Ground	d supplies	All s	supplies
State	Number	Hardness as CaCO ₃ (ppm)	Number	Hardness as CaCO ₃ (ppm)	Number	Hardness as CaCO ₃ (ppm)
Alabama	15	30	9	72	24	46
Arizona	5	183	20	215	25	209
Arkansas	13	3 8	15	80	28	61
California	32	150	56	189	88	175
Colorado	12	107			12	107
Connecticut	19	26	3	42	22	28
Delaware	2	45	7	72	9	66
District of						
· Columbia	1	84			1	84
Florida	5	75	24	252	29	222
Georgia	16	24	18	126	34	78
Idaho	7	65	11	172	18	131
Illinois	19	174	14	358	33	25 2
Indiana	17	199	21	3,52	3 8	284
Iowa	13	195	24	3 55	37	299
Kansas	13	210	15	307	28	262
Kentucky	18	92	3	206	21	109
Louisiana	6	87	11	112	17	103
Maine	13	20	2	22	15	21
Maryland	8	3 6	3	30	11	34
Massachusetts	33	24	14	58	47	34
Michigan	19	135	- 14	298	33	204
Minnesota	5	148	18	. 2 80	23	251
Mississippi	3	61	20	34	23	37

AVERAGE HARDNESS, BY STATES, OF FINISHED WATER FROM PUBLIC SUPPLIES FOR 1,315 OF THE LARGER CITIES IN THE UNITED STATES, 1952

LOW TYPE OF THE LANCEST CITES IN THE DIVITED STATES THESE

GEOLOGICAL SURVEY

WATER-SUPPLY PAPER 1300 PLATE 5

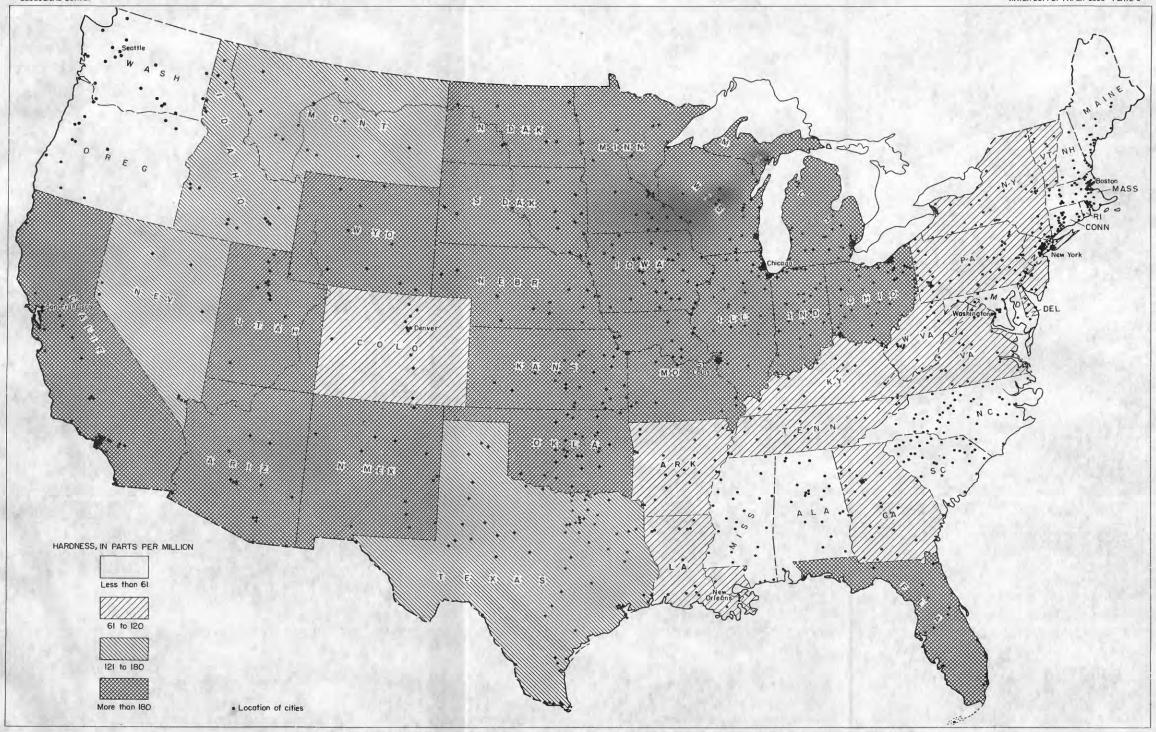


Table 11. --Number of supplies, and average hardness, by States, of raw water for 1,315 of the larger cities in the United States, 1952 --Continued

				d Diates, 1		
	Surface	supplies	Ground	i supplies	All S	upplies
State	Number	Hardness as CaCO ₃ (ppm)	Number	Hardness as CaCO ₃ (ppm)	Number	Hardness as CaCO ₃ (ppm)
Missouri	16	163	7	247	23	189
Montana	10	106	6	193	16	139
Nebraska	1	261	12	267	13	267
Nevada	4	18 2	6	168	10	174
New Hampshire	7	17	4	55	11	31
New Jersey	18	54	22	110	40	85
New Mexico	3	89	11	337	14	284
New York	44	78	19	106	63	87
North Carolina	38	22	4	126	42	32
North Dakota	6	231	5	300	11	262
Ohio	26	160	17	361	43	240
Oklahoma	20	176	8	246	2 8	196
Oregon	11	26	4	50	15	33
Pennsylvania	54	70	12	172	66	89
Rhode Island	8	31	5	26	13	29
South Carolina	21	18	14	19	35	19
South Dakota	5	256	8	452	13	392
Tennessee	13	85	9	84	22	85
Texas	34	177	46	126	80	148
Utah	3	196	12	222	15	217
Vermont	8	57	4	79	12	64
Virginia	25	43	9	141	34	69
Washington	14	33	9	83	23	52
West Virginia	16	62	5	202	21	95
Wisconsin	9	142	15	239	24	203
Wyoming	6	173	7	247	13	213
United States	714	94	602	192	1,316	139

MEDIAN HARDNESS

Data on the average hardness of public water supplies, by States, for 1,315 of the larger cities of the United States are summarized in a different way in table 12 for finished-water supplies and in table 13 for raw-water supplies than in the preceding tables. These two tables in addition to showing the median of the average hardnesses of the supplies of each State, show the range in average hardness of the supplies of each State based on the number of supplies indicated in each table. The number of supplies shown for each State may not necessarily coincide with the number of cities for each State included in the report, because a number of cities in several States are supplied from a single source of supply, and conversely, one city may have several sources of supply.

Table 12. --Number of supplies, range in average hardness, and median hardness of finished water, by States, for 1,315 of the larger cities in the United States, 1952

State	Number of supplies	Range in hardness	Median hardness	State	Number of supplies	Range in hardness	Median hardness
Alabama	23	14-115	49	Nebraska	13	112-37.0	274
Arizona	25	12-500	185	Nevada	10	33-320	162
Arkansas	28	11-250	45	New Hampshire	11	10-121	21
California	86	18-561	152	New Jersey	40	10-251	67
Colorado	12	11-317	68	New Mexico	14	30-626	168
Connecticut	23	11-46	32	New York	63	7-292	82
Delaware	9	24-144	61	North Carolina	42	6-113	36
District of Columbia	1		96	North Dakota	11	81-406	152
Florida	29	20-274	91	Ohio	42	46-427	120
Georgia	33	18-360	50	Oklahoma	28	8-675	130
Idaho	18	8-354	125	Oregon	15	9-95	36
Illinois	34	80-565	144	Pennsylvania	65	5-256	72
Indiana	35	76-640	286	Rhode Island	12	17-83	30
lowa	37	83-632	192	South Carolina	35	3-107	17
Kansas	28	75-548	130	South Dakota	13	70-672	255
Kentucky	21	12-198	107	Tennessee	22	19-177	79
Louisiana	17	2-151	76	Texas	80	4-700	96
Maine	15	8-82	18	Utah	15	152-349	198
Maryland	11	3-85	35	Vermont	12	16-121	58
Massachusetts	47	8-80	39	Virginia	32	8-295	45
Michigan	33	43-405	132	Washington	23	12-155	46
Minnesota	23	46-464	241	West Virginia	21	28-264	70
Mississippi	23	2-150	23	Wisconsin	24	50-500	131
Missouri	23	55-294	120	Wyoming	13	12-575	170
Montana	16	16-404	121				L

Table 13. --Number of supplies, range in average hardness, and median hardness of raw water, by States, for 1,315 of the larger cities in the United States, 1952

State	Number of supplies	Range in hardness	Median hardness	State	Number of supplies	Range in hardness	Median hardness
Alabama	24	7-115	41	Nebraska	13	155-370	284
Arizona	25	12-500	190	Nevada	10	33-320	202
Arkansas	2 8	10-250	35	New Hampshire	11	10-121	21
California	88	18-561	167	New Jersey	40	5-251	66
Colorado	12	11-308	64	New Mexico	14	35-626	212
Connecticut	22	11-46	28	New York	63	7-292	81
Delaware	9	22-144	35	North Carolina	42	6-195	23
District of Columbia	1	`	84	North Dakota	11	51 -445	257
Florida	29	12-1,060	200	Ohio	43	95-677	217
Georgia	34	10-360	48	Oklahoma	28	8-700	134
Idaho	18	8-354	105	Oregon	15	8-95	35
Illinois	33	126-565	225	Pennsylvania	66	5-314	68
Indiana	38	112-640	285	Rhode Island	13	10-68	26
Iowa	37	96-632	268	South Carolina	3 5	3-107	16
Kansas	2 8	115-548	250	South Dakota	13	193-673	281
Kentucky	21	12-350	100	Tennessee	22	25-161	86
Louisiana	17	2-395	90	Texas	80	4-700	126
Maine	15	8-63	18	Utah	15	152-349	198
Maryland	11	3-80	32	Vermont	12	16-121	57
Massachusetts	47	8-95	28	Virginia	34	7-330	44
Michigan	33	43-405	185	Washington	23	12-155	46
Minnesota	23	44-464	250	West Virginia	21	16-264	87
Mississippi	23	3-226	20	Wisconsin	24	50~500	168
Missouri	23	55-317	183	Wyoming	13	12-700	150
Montana	16	3-404	144				

The range in hardness as shown in these two tables is the range in the average hardnesses for the number of supplies as indicated for each State. No intent is made to show the range in hardness of the individual supplies of each city. The tables show that for some States the range in average hardness of the supplies is comparatively small, whereas for other States it is large. The lower limits of the range in average hardness for all the States for finished-water supplies range from 2 to 152 parts, the upper limits from 46 to 700 parts. For the raw-water supplies, the lower limits of the range in average hardness for all the States is 2 to 193 parts; the upper limits, 46 to 1,060 parts. The ranges in average hardnesses, as here shown for the public water supplies included in this report for each State, tend to emphasize the fact that erroneous conclusions may be drawn from averages of hardness for each State.

The median of the average hardnesses is that value below which there are as many supplies with hardness less than the median as there are supplies with hardness greater than the median. The difference between the average hardness and the median indicates the difference in balance of the hardnesses of supplies with less and greater hardness than the median.

All data on hardness of public water supplies, by States, for the places included in this report are shown in summary table 14, in which are summarized the data on weighted average hardness, average hardness, and median hardness.

Table 14. --Summary of data on hardness of public water supplies, by States, for 1,315 of the larger cities in the United States, 1952

1,	315 Of the 12	irger citie	s in the U	nned states,	1992	
	Fini	shed wate	r	F	aw water	
State	Weighted average hardness	Average hardness	Median hardness	Weighted average hardness	Average hardness	Median hardness
Alabama	55	56	49	47	46	41
Arizona	216	208	185	215	209	190
Arkansas	42	61	45	36	61	35
California	118	160	152	188	187	167
Colorado	107	106	68	110	89	64
Connecticut	21	29	32	27	28	28
Delaware	60	75	61	55	66	35
District of						
Columbia	96	96	96	84	8 4	84
Florida	123	91	91	216	222	200
Georgia	41	76	50	44	78	48
Idaho	119	136	125	119	131	105
Illinois	156	215	144	162	252	225
Indiana	237	272	286	251	284	285
Iowa	212	235	192	286	299	26 8
Kansas	176	185	130	245	262	250
Kentucky	102	101	107	116	109	100
Louisiana	68	64	76	101	103	90
Maine	20	23	18	18	21	18
Maryland	48	40	35	38	34	32
Massachusetts	23	36	39	22	34	28
Michigan	115	160	132	140	207	185
Minnesota	114	224	241	177	251	250
Mississippi	39	35	23	31	37	20
Missouri	106	141	120	133	188	183
Montana	120	137	121	121	139	144
Nebraska	247	254	274	250	267	284
Nevada	135	154	162	147	174	202
New Hampshire .	28	30	21	29	31	21
New Jersey	75	86	67	73	85	66
New Mexico	237	271	168	244	284	212
New York	52	74	82	52	87	81

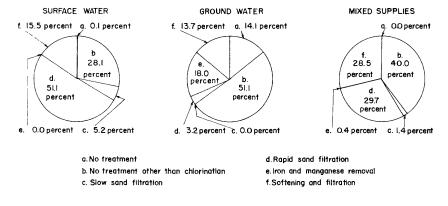
Table 14. --Summary fit data on hardness of public water supplies, by States, for 1,315 of the larger cities in the United States, 1952--Continued

	the larger					
	Fir	ished wate	r		Raw water	
State	Weighted average hardness	Average hardness	Median hardness	Weighted average hardness	Average hardness	Median hardness
North Carolina	34	3 8	36	28	32	23
North Dakota	170	192	152	283	262	257
Ohio	150	155	120	179	240	217
Oklahoma	125	169	130	160	196	134
Oregon	17	37	36	15	33	35
Pennsylvania	86	81	72	91	89	68
Rhode Island	32	34	30	21	29	26
South Carolina	18	22	17	18	19	16
South Dakota	299	292	255	362	392	281
Tennessee	70	86	79	66	85	86
Texas	132	144	96	153	148	126
Utah	191	217	198	191	217	198
Vermont	53	64	58	53	64	57
Virginia	65	70	45	54	69	44
Washington	44	52	46	45	52	46
West Virginia	88	94	70	86	100	87
Wisconsin	167	195	131	171	203	168
Wyoming	171	211	170	171	221	150
United States	97	121	91	116	139	90

SOURCES AND TREATMENT OF PUBLIC WATER SUPPLIES

Table 15 is a tabulation of data as to sources and general methods of treatment relative to the public water supplies of the larger cities of the United States in 1952. The data for the table were taken from those shown for the supply for each place in the report.

Table 15. --Source and treatment of the public water supplies for 1,315 of the larger cities in the United States, 1952


Number of places Population served Number of places Percent of Thousands Percent of Dopulation of United States	hanger erries in the Or	med Sta	ites, 198	2	
Source and treatment Num			P	opulation	served
Surface water: No treatment	S	Num-	l	T	
Surface water: No treatment 3 95 0.1 0.1	Source and treatment	ber of	Thou-	D	Ł.
Surface water: No treatment than chlorination 143 18,095 28,1 12,0				Percent	
No treatment other than chlorination 143 18,095 28,1 12.0		praces			United States
No treatment other than chlorination 143 18,095 28.1 12.0	Surface water:				
No treatment other than chlorination 143 18,095 28,1 12.0 Slow sand filtration 28 3,348 5.2 2.2 2.2 2.3 Softening 449 32,867 51.1 21.8 Softening With lime 44 3,917 6.1 2.6 With lime-soda ash 31 3,163 4.9 2.1 By cation exchange 3 2,859 4.5 1.9 Total softened supplies 78 9,939 15.5 6.6 Total surface-water supplies 711 64,344 100.0 42.7 Ground water (wells, infiltration galleries, and springs): No treatment other than chlorination 213 7,335 51.0 4.9 170 180 1	No treatment	3	· 95	0.1	0.1
Slow sand filtration		143	18, 095	28.1	12.0
Rapid sand filtration					
Softening				ı	
With lime 44 3,917 6.1 2.6 With lime-soda ash 31 3,163 4.9 2.1 By cation exchange 3 2,859 4.5 1.9 Total softened supplies 78 9,939 15.5 6.6 Total surface-water supplies 711 64,344 100.0 42.7 Ground water (wells, infiltration galleries, and springs): 114 2,025 14.1 1.4 No treatment other than chlorination 213 7,335 51.0 4.9 Iron and manganese removal 64 2,594 18.0 1.7 Slow sand filtration 0 0 0 0 Rapid sand filtration 16 463 3.2 3 Softening 31 1,114 7.7 7 With lime 31 1,114 7.7 7 With lime-soda ash 20 524 3.6 4 By cation exchange 472 14,395 100.0 9.6 Mixed suppl		100	02,001	J	
With lime-soda ash 31 3, 163 4.9 2.1 By cation exchange 3 2,859 4.5 1.9 Total softened supplies 78 9,939 15.5 6.6 Total surface-water supplies 711 64,344 100.0 42.7 Ground water (wells, infiltration galleries, and springs): 114 2,025 14.1 1.4 No treatment other than chlorination 213 7,335 51.0 4.9 Iron and manganese removal 64 2,594 18.0 1.7 Slow sand filtration 16 463 3.2 .3 Softening 31 1,114 7.7 .7 With lime 31 1,114 7.7 .7 With lime-soda ash 20 524 3.6 .4 By cation exchange 14 340 2.4 .2 Total ground-water supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): 0 0 0 <t< td=""><td></td><td>44</td><td>3 917</td><td>6.1</td><td>2.6</td></t<>		44	3 917	6.1	2.6
By cation exchange 3 2,859 4.5 1.9 Total softened supplies 78 9,939 15.5 6.6 Total surface-water supplies 711 64,344 100.0 42.7 Ground water (wells, infiltration galleries, and springs): No treatment 114 2,025 14.1 1.4 No treatment other than chlorination 213 7,335 51.0 4.9 Iron and manganese removal 64 2,594 18.0 1.7 Slow sand filtration 0 0 0 0 Rapid sand filtration 16 463 3.2 3 Softening 31 1,114 7.7 7 With lime 31 1,114 7.7 7 With lime -soda ash 20 524 3.6 4 By cation exchange 14 340 2.4 2.2 Total softened supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 4 0 Slow sand filtration 58 2,694 29.7 1.8 Softening With lime 10 1,164 12.8 3					
Total softened supplies	Ry cotion evolunce			1	
Total surface-water supplies	by cation exchange				
Ground water (wells, infiltration galleries, and springs): No treatment	Total softened supplies	78	9,939	15.5	6.6
Ground water (wells, infiltration galleries, and springs): No treatment					
and springs): No treatment No treatment other than chlorination Iron and manganese removal Slow sand filtration Rapid sand filtration With lime With lime Softening Total ground-water supplies No treatment other than chlorination Slow sand filtration Softening Wixed supplies (surface and ground water): No treatment No treatment Slow sand filtration Softening With lime Softening With lime Softening With lime Softening Wixed supplies (surface and ground water): No treatment Slow sand filtration Softening With lime Softening Softening With lime Softening Softening With lime Softening Softening Softening Softening With lime Softening	Total surface-water supplies	711	64,344	100.0	42.7
No treatment	Ground water (wells, infiltration galleries,				
No treatment other than chlorination 213 7,335 51.0 4.9					
No treatment other than chlorination 213 7,335 51.0 4.9	No treatment	114	2,025	14.1	1.4
Iron and manganese removal		213		51.0	4.9
Slow sand filtration		64			1.7
Rapid sand filtration 16 463 3.2 .3 Softening 31 1,114 7.7 .7 With lime 20 524 3.6 .4 By cation exchange 14 340 2.4 .2 Total softened supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): 0 0 0 0 No treatment 0 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 2 41 4 0 Slow sand filtration 7 132 1.4 1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 8 With lime 10 1,164 12.8 8 With lime soda ash 12 1,096 12.1 7 By cation exchange 6 <td></td> <td></td> <td></td> <td></td> <td>0</td>					0
Softening 31 1, 114 7.7 .7 With lime 20 524 3.6 .4 By cation exchange 14 340 2.4 .2 Total softened supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): 0 0 0 0 No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening With lime 10 1,164 12.8 .8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 132 9,087 100.0 6.0 Total all softened supplies		•	, -		· ·
With lime 31 1,114 7.7 7 With lime-soda ash 20 524 3.6 4 By cation exchange 14 340 2.4 .2 Total softened supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): 0 0 0 0 No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening With lime 10 1,164 12.8 8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 132 9,087 100.0 6.0 Total all softened sup			100		
With lime-soda ash 20 524 3.6 .4 By cation exchange 14 340 2.4 .2 Total softened supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): 0 0 0 0 No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening With lime 10 1,164 12.8 8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6 <td>9</td> <td>31</td> <td>1. 114</td> <td>77</td> <td>7</td>	9	31	1. 114	77	7
By cation exchange 14 340 2.4 .2 Total softened supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): 0 0 0 0 No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 8 With lime 10 1,164 12.8 8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6		,		1	
Total softened supplies 65 1,978 13.7 1.3 Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 .8 With lime 10 1,164 12.8 .8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6					1
Total ground-water supplies 472 14,395 100.0 9.6 Mixed supplies (surface and ground water): 0 0 0 0 No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 8 With lime 10 1,164 12.8 8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6					
Mixed supplies (surface and ground water): 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 8 With lime 10 1,164 12.8 8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6	Total softened supplies	65	1,978	13.7	1.3
No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 .8 With lime 10 1,164 12.8 .8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6	Total ground-water supplies	472	14, 395	100.0	9.6
No treatment 0 0 0 0 No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 .8 With lime 10 1,164 12.8 .8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6	Mived supplies (surface and ground water).				
No treatment other than chlorination 37 3,631 40.0 2.4 Iron and manganese removal 2 41 .4 .0 Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 8 With lime 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6		_	_		_
Iron and manganese removal 2		-		-	
Slow sand filtration 7 132 1.4 .1 Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 .8 With lime 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6					
Rapid sand filtration 58 2,694 29.7 1.8 Softening 10 1,164 12.8 8 With lime 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6		_			1
Softening 10 1,164 12.8 .8 With lime - soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6		1			1
With lime 10 1,164 12.8 .8 With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6		28	2, 694	29.7	1.8
With lime-soda ash 12 1,096 12.1 .7 By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6	•	10	1 104	10.0	^
By cation exchange 6 329 3.6 .2 Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6		1			
Total softened supplies 28 2,589 28.5 1.7 Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6					
Total mixed supplies 132 9,087 100.0 6.0 Total all softened supplies 171 14,506 16.5 9.6	By cation exchange	<u>6</u>	329	3.6	.2
Total all softened supplies 171 14,506 16.5 9.6	Total softened supplies	28	2,589	28.5	1.7
	Total mixed supplies	132	9,087	100.0	6.0
		-			
Total all supplies	Total all softened supplies	171	14,506	16.5	9.6
	Total all supplies	1,315	87,826	100.0	58.3

NATURAL SURFACE WATER

Of the 711 places included in this report that are supplied with surface water only, 3 receive no treatment and 143 receive no treatment other than chlorination. See table 15 and fig. 2. The population thus served represents 28.2 percent of the population served with surface supplies only, and 12 percent of the total population of the United States. Falling into this category are some of the largest public supplies of the country. These supplies are usually taken from large lakes or from impounding reservoirs on streams that drain protected uninhabited watersheds. The storage capacity of these lakes and reservoirs is usually so large in relation to demand that sufficient time is given for the settling of any suspended matter and for natural purification. The growth of algae in these open bodies of water can be very troublesome.

Many of these waters are soft and contain small quantities of mineral matter in solution. Some may have little color, others may be highly colored. The lack of hardness and dissolved minerals are desirable characteristics as far as domestic use and many industrial uses are concerned, but on the other hand these waters are likely to be corrosive and may cause trouble in service mains and plumbing installations. Some of the waters that are not corrosive may be equally troublesome because of their hardness and mineral content.

The current trend is to treat public supplies so as to make them not only safe for drinking from a sanitary point of view but more satisfactory for general use and to protect expensive water-supply systems from corrosion and resultant troubles.

TREATED SURFACE WATER

A total of 487 places of all the places supplies with surface water included in this report were furnished with water filtered through sand filters, exclusive of those supplies filtered in conjunction with softening. Of the population supplied with filtered water, 5.2 percent received water from slow sand filters, and 51.1 percent, from rapid sandfilters. Seventy-eight of the surface water supplies were softened. These softened supplies represented 15.5 percent of population furnished with surface water only.

A total of 71.4 percent of the population served with surface water received water that was given more treatment than just chlorination. The above total does not include the surface water mixed with ground water and classed as mixed supplies.

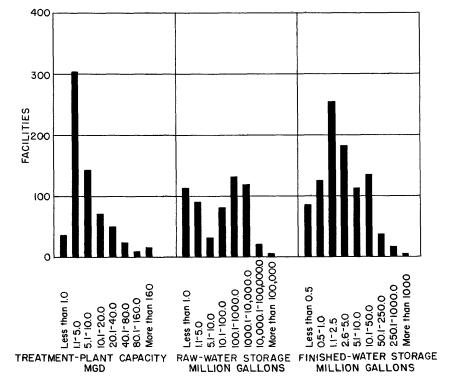
GROUND WATER

Ground water, although used exclusively by only 472 of the places included in this report is used by the greater part of the rural population of the country and by the smaller cities and towns. Ground water is less subject to changes in chemical composition than surface water, is generally clearer, and is cooler in summer. On the other hand, ground water usually contains more dissolved mineral matter and frequently objectionable quantities of iron. Supplies from shallow sources and springs are sometimes subject to pollution.

The population served exclusively by ground-water supplies of the places in this report represents 16.4 percent of the total population of the 1,315 places, and only 9.6 percent of the total population of the country. Of the 472 places served with ground water, 114 places received water with no treatment; 213 places received water with no treatment other than chlorination. The population of these 327 places represents about 65 percent of the total population served exclusively with ground water. Sixty-five places were served with softened water, the population of which places represents about 14 percent of the total population served with ground water.

MIXED SUPPLIES

The population of 132 of the 1, 315 places in this report was furnished with supplies, classed as mixed, from both surface and ground sources. In some instances the water from one source was not mixed with that from the other before entering the city mains; in other instances the water from the two sources was mixed prior to entering the mains. In some instances one or more sections of a city was furnished with water from one source, while at the same time other sections were furnished water from the other source. Ground water made up about 27 percent of the total supply of these places furnished with mixed supplies. The population served with mixed supplies is about 10 percent of the total population of the 1, 315 places included in this report and 6.0 percent of the population of the country.


Most of these places received water which was given more treatment than chlorination. Most of the supplies were filtered or softened. In some instances one part of the supply received no treatment other than chlorination, whereas the other part received more treatment.

PHYSICAL PLANT FACILITIES

Data relative to the physical plant facilities for treatment, raw-water storage, and finished-water storage for most of the places included in this report, are shown in table 16 and graphically in figure 3. Facilities for chlorination only are not included in the statistics relative to the number and capacities of the treatment plants. For a few places the capacities of the treatment plants are not shown. Facilities for the storage of raw and finished water are included for all places included in the report for which storage data are shown. For some places storage data were not available or were not reported. In the tabulation of the data, chlorinated water is considered finished water. Many large cities, the supplies of which are taken from natural lakes or from large streams, have few facilities for raw-water storage and have no particular need for them. Many places taking their supplies from wells have few facilities for raw-water storage since many such supplies are pumped directly into the distribution systems.

Table 16. --Physical plant facilities for public water supplies for the larger cities in the United States, 1952

		in the Uni			1	
	Treatme	nt plants	Raw-wa	iter storage	Finished-v	water storage
State	Number	Total	Number		Number	a
	of	capacity	of	Capacity	of	Capacity
	plants	(mgd)	places	(mg)	places	(mg)
Alabama	15	139	11	5,736	24	61
Arizona	5	43	9	8,598	9	172
Arkansas	20	74	7	17,498	26	74
California	17	652	55	621, 233	39	1,956
Colorado	7	242	15	187,354	7	221
Connecticut	10	115	21	113, 154	11	1,260
Delaware	5	6	5	100	6	1,200
District of	ľ	٠	J	100		•
Columbia	2	225	1	560	1	118
Florida	17	217	10	766	24	59
Georgia	19	217	16	1,238	29	78
Idaho	4	19	11	3,015	7	22
Illinois	21	494	10	15,631	41	789
Indiana	23	317	13	7,993	30	141
Iowa	19	136	15	2,404	30	125
Kansas	17	150	9	1,039	19	10
Kentucky	16	222	11	3,058	21	164
Louisiana	īĭ	185	6	40	13	45
Maine	4	20	8	8,774	17	162
Maryland	8	315	10	59,036	11	847
Massachusetts	13	116	52	562,570	50	2,570
Michigan	18	889	10	1,641	38	288
Minnesota	8	349	5	6,755	20	223
Mississippi	9	35	7	1,209	18	28
Missouri	18	503	14	4,176	28	379
Montana	4	53	11	18,279	6	33
Nebraska	4	123	7	96	5	95
Nevada	1	2	7	119	3	7
New Hampshire	3	6	7	9,536	7	85
New Jersey	15	300	36	54	50	1
New Mexico	2	4	9	2,851	9	47
New York	36	498	30	377,798	51	5,225
North Carolina	39	187	27	48,856	40	169
North Dakota	7	26	4	7	10	191
Ohio	31	888	28	32, 164	46	686
Oklahoma	21	161	18	107,974	24	128
Oregon	6	45	6	15	15	3 85
Pennsylvania	35	936	36	49,028	45	2,502
Rhode Island	5	111	15	6,440	15	93
South Carolina	22	94	20	5,483	29	75
South Dakota	8	27	2	3,876	11	38
Tennessee	16	212	2	. 2	19	156
Texas	36	605	33	119,719	65	497
Utah	0	0	9	1,685	4	66
Vermont	1	6	8	1,606	5	56
Virginia	24	257	19	30, 564	30	3,222
Washington	4	24	8	8,371	19	755
West Virginia.	18	133	8	1,501	21	60
Wisconsin	12	293	7	20	26	140
Wyoming	4	23	5	724	7	49
Total	660	10,694	693	2,460,346	1,081	24,557

TREATMENT OF WATER

The treatment of water for public supplies is comprehensively discussed in technical books expressly written for that purpose (Amer. Water Works Assoc., 1950; Hopkins, 1948; Nordell, 1951). Improvements in the design of waterworks equipment and installations and the processes involved in the treatment and purification of water supplies are generally reported in the Journal of the American Water Works Association and other waterworks publications of a technical or professional nature. Statistics and descriptions have been collected for practically all public water-supply systems and purifications plants of the country. (U. S. Public Health Service, 1948).

The general discussions in this report relative to the treatment of public water supplies are of necessity brief and are intended to be mainly explanatory in character as to the data contained herein. The descriptions given of the treatment of some of the individual supplies are incomplete, and others are lacking in detail, but it is hoped that the descriptions that are given will be of some aid to those using the report, and of value in the interpretation and avaluation of the analytical data for each supply.

NATURAL PURIFICATION

It is generally recognized that waters impounded in artificial lakes and reservoirs improve in quality from storage. Suspended matter settles out, and the amount of color and the number of pathogenic and other bacteria decrease. On the other hand, conditions are favorable for the growth of algae and other microorganisms. Sanitary conditions within the catchment area of such supplies are

usually carefully controlled to prevent pollution of the supply.

On account of the great increase in urban population and industrial development, and the resultant pollution of many streams, relatively few places depend on natural purification of their supplies. Chlorine is regularly applied as a safety measure to those supplies that have no other treatment than natural purification.

FILTRATION

Filtration, simply defined, is a process of clearing a liquid of suspended material. Filtration in water treatment and purification is of extreme importance. Sand is usually the filtering medium, and the two principal types of filters are rapid sand filters and slow sand filters. The essential difference between filtration by means of rapid sand filters and slow sand filters is in the treatment of the raw water preceding filtration, the rate of filtration, and the method of cleaning the filters. The preliminary treatment of the raw water is important in the efficient operation of filters of both types. The rate of filtration is as much as 50 times more rapid in the rapid sand filter than in the slow sand filter. The rapid sand filter is cleansed or is washed by reversing the flow of water through the filtering medium, and the slow sand filter by removing and cleaning the top layer of sand

Other filtering media and other types of filters are used in the treatment of water. Crushed and graded anthracite coal is sometimes used instead of sand and gravel. The rate of filtration through anthracite coal is more rapid than through sand, and the velocity needed for the wash water is lower, but coal is more expensive than sand and gravel. Pressure types of filters with upward or downward flow are used as opposed to the sand filters with gravity flow. Pressure filters may be horizontal as well as vertical in design. Pretreatment of the water is as necessary for the pressure filters as it is for the more conventional type sand filter.

RAPID SAND FILTRATION

The essential processes in the treatment of water where rapid sand filters are concerned are coagulation and sedimentation preceding filtration.

Plain sedimentation. --Plain or primary sedimentation, differentiated from that which follows after the addition of the coagulants to the raw water, is accomplished at many plants by allowing the raw water to stand in large basins or reservoirs for a length of time sufficient for the greater quantity of the suspended material to settle out. Finely divided and colloidal materials do not readily settle out, making it necessary to add coagulants before the filtration process. Plain sedimentation is an important preliminary step in the treatment of turbid waters even where rapid sand filters are used and is absolutely essential where slow sand filters are used, if coagulation is not used prior to filtration. Earlier this was the only treatment given surface waters, but the current practice is not to rely on plain sedimentation as a means of water purification. Impounded reservoir supplies are usually chlorinated as an added precaution when no other treatment is given.

Provisions are usually necessary for the removal of the settled material from reservoirs and basins by operation of sluice gates or other means. Capacity of reservoirs can be greatly lessened by this settled material and the useful life of the reservoir limited.

Coagulation. --To settle out the finely divided solid material, colloidal material, and bacteria and other micro-organisms, it is necessary to apply coagulants to the raw water after plain sedimentation. The most commonly used coagulant is aluminum sulfate, referred to as alum. Ferrous sulfate and ferric sulfate are less commonly used. Other coagulants are ferric chloride, sodium aluminate, sodium silicate, and bentonite. Lime and soda ash as conditioning agents are frequently used in conjunction with coagulants. Activated silica, originally sug-

gested by Baylis (1937) as an aid in coagulation, is finding increasing use as a coagulant in softening plants (Black, 1948) and in other treatment plants (Hay, 1944). Different coagulants have specific merits which must be recognized in selecting the ones to be used. Coagulants, either in dry or liquid form, are fed to the raw water by various regulating feeding devices. The ease in handling and application of the coagulant is sometimes an important consideration in the selection of the coagulant to be used.

The addition of alum in the coagulation process increases the sulfate content, reduces the alkalinity of the water, and tends to leave the water somewhat corrosive. The increase in the sulfate content of the water is of minor significance in the industrial use of the water. The adjustment of the pH of the water is usually necessary before delivery to the mains.

The action of the coagulant is to clump together the suspended material, so that it and most of the coagulant may settle out prior to filtration. Proper coagulation and subsequent settling are very important in the efficient operation of the modern rapid sand filtration plant. The quantity or dosage of coagulant to be added to the raw water was based formerly on the turbidity, later on the alkalinity of the water. Current practice is to determine the proper dosage by trial. Turbidity, pH, temperature of the water, and length of time of mixing are factors to be considered in determining the proper dosage. Finely divided suspended material is more difficult to coagulate than larger particles. Good coagulation is obtained only at definite pH ranges, and in some waters adjustment of pH is necessary. Length of time of mixing and temperature of the water affect coagulation and floculation, and consequently the dosage required. The variable character of a water and the different types of waters must be considered; strict laboratory control is necessary throughout the whole treatment process.

Mixing and settling basins, filters. --There are various types of mixing basins, the function of which are to mix the chemicals with the water quickly and uniformly so as to bring about the proper flocculation of the coagulant and to keep the water in motion a certain length of time before it enters the settling basins or sedimentation basins. The coagulated water is detained in the settling basins to allow the floct o settle out. The design and arrangement of the settling basins are such that this settled floc or sludge can be removed continuously or periodically. The water finally enters the filters from the settling basins practically free of suspended matter and floc and a great many bacteria and micro-organisms.

The rapid sand filter is usually rectangular in shape, filled to the desired depth with graded gravel and sand, equipped with a system of underdrains to carry off the filtered water, and a means of washing by an upward flow of water.

The rate of flow of water through the filter is usually 2 to 3 gallons per minute per square foot of filter surface. The filtering rate and loss of head at most modern plants are recorded automatically. Washing is necessary when there is loss of head and flow of water through the filter. The washing process consists basically in an upward flow of water through the filter bed at such velocity that the filtering sand layer is agitated sufficiently to clean it of the material to be removed yet without appreciable loss of filter sand. Mechanical means of agitating the sand are sometimes employed during the washing process. The efficient operation of rapid sand filters requires constant attention to give an effluent of high quality.

SLOW SAND FILTRATION

Slow sand filters are the older type of sand filters and are often referred to as the European type, as compared with the rapid sand filters or the American type.

The filtering units are usually of large size requiring much more space, and therefore construction costs are much greater than for rapid sand filters of the same capacity. The rates of filtration range from 2 to 10 million gallons per acre of sand surface per day as compared to the 125 million gallons or more of the rapid sand filter.

Filtration by slow sand filters is definitely limited to waters of low turbidity, usually less than 20 parts (silica standard), of low color, and of low bacterial load. Water from lakes and large reservoirs may be filtered by slow sand filters without

pretreatment.

Slow sand filters are efficient in the removal of taste and odor because biological activity in the filters changes the forms of nitrogen and destroys some forms of organic matter. They can be operated with a minimum of attention. Because of construction costs and the lack of adaptability to waters of changing characteristics and to modifications of treatment of the water, few slow sand filters are being installed today.

DISINFECTION

Chlorine is the chief reagent used in the disinfection of water supplies and is added before delivery of the water to the mains. The quantity of chlorine to be added for effective disinfection depends upon the chlorine demand of the water. This quantity must satisfy the chlorine demand and leave a residual of free available chlorine of about 0.1 to 0.3 part per million. The chlorine residual can be conveniently determined by the well-known ortho-tolidine or ortho-tolidine arsenite test. Once the chlorine residual required for a water, determined by bacteriological check, is known, the chlorine dosage can be controlled to meet this requirement by an automatic feeding device. Excessive chlorination can thus be avoided.

Other agents used in the disinfection of water are chloride of lime, hypochlorites, chloramines, chlorine dioxide, ammonia in conjunction with chlorine, ozone, and ultra-violet light. Some of these agents find special application where control of tastes and odors are concerned, or where the volume of water to be treated is not large.

Prechlorination is practiced in many modern water-treatment plants. Numerous benefits result from the practice and in some instances it is a necessity, especially where control of tastes and odors are involved in the treatment scheme. In practice the chlorine may be added to the water before or with the coagulant. Prechlorination may find special application in waters softened with lime.

Superchlorination is practiced at some plants where the water is heavily polluted or contains taste-producing compounds. If the chlorine is added greatly in excess of the chlorine demand of the water, dechlorination, usually with sulfur dioxide or some of its derivatives, should follow to remove the surplus chlorine before the water enters the mains.

Chlorination does not normally affect the industrial value of the water except as it may affect the taste or odor.

ADJUSTMENT OF pH

Some adjustment of the pH of the water is usually necessary either during the main treatment process or before the filter effluent enters the mains. Finished water of too low pH will aggressively attack iron mains, resulting in the water carrying in solution troublesome quantities of iron, and damage to the mains by pitting and tuberculation. Lime or soda ash is usually used to adjust the pH of the water so that it will not be corrosive. Carbon dioxide is also used to adjust the pH of lime softened waters.

TASTES AND ODORS

One of the requirements of a good drinking water is that it be free of tastes and odors. Tastes and odors do not seriously affect the industrial use of water except in the food and beverage industries.

Tastes and odors in public water supplies may be divided into two general classes --those caused by plant growths of the algal type and those that are due to sewage and to polluting wastes from industrial plants such as coke, gas works, oil refinery, and cannery. The tastes and odors resulting from the growth and destruction of algae are usually accompanied by those resulting from decaying vegetation, such as

leaves, grass, and roots, and from bacterial slimes. The tastes and odors resulting from sewage and industrial pollution may be due to the tastes and odors of the polluting substances themselves or may be produced as a direct result of the presence of these substances in the water in the treatment process. These tastes and odors may be described as organic, medicated, or phenolic.

Various methods are used in the prevention and elimination of tastes and odors. Aeration is sufficient in some instances. Effective algicides are copper sulfate and chlorine, the latter either in elemental form or as calcium hypochlorite. But it must be emphasized that the growth of algae should be prevented or controlled, for the tastes and colors resulting from too great a destruction of algae is often worse than those produced by the algae in their life cycle. Activated carbon, usually added along with coagulants, is used at many plants. It may also be applied to reservoirs. Heavy application of chlorine in prechlorination or superchlorination is used in preventing so-called phenolic tastes as well as those resulting from heavy pollution. Ammonia, in conjunction with chlorine, also is used for the same purpose. In recent years chlorine dioxide is finding increasing application in the prevention and control of tastes and odors. (Aston, 1950.) The whole problem of prevention and elimination of tastes and odors is complicated.

IRON AND MANGANESE REMOVAL

Surface-water supplies, generally, have very little iron in solution. Some streams, however, receiving industrial wastes or acid mine drainage may carry objectionable quantities of iron and manganese as well. Some surface waters containing complex organic acids or substances may carry in solution considerable quantities of iron.

Many ground waters contain considerable quantities of iron dissolved from soil and rock material by carbon dioxide in solution in the water, in the absence of oxygen, as ferrous carbonate. Iron in solution as a result of oxidation of iron pyrites is present as ferrous sulfate. Organic acids in ground water may contribute to the solution of the iron. Many ground waters containing considerable quantities of iron frequently contain objectionable quantities of manganese.

The occurrence of iron in ground waters cannot be predicted with any degree of certainty. Samples of water from wells of about the same depth and in close proximity may differ decidedly in their iron content.

The principle of iron removal is simple but no single method may be entirely satisfactory because of the presence of other constituents, such as organic matter, manganese, and carbon dioxide. Iron in solution in the water in the ferrous condition is oxidized by aeration to ferric hydrate, which settles out. Surface-water supplies, because of natural aeration, require very little attention to iron removal. The regular treatment that is given most surface supplies and the aeration incident thereto is generally sufficient to remove most of the iron. If the water is softened, both iron and manganese are removed in the process. Some treated waters may dissolve iron from the distribution mains and service pipes.

Aeration followed by settling, and filtration through sand or fine gravel, will generally remove iron from most ground waters. Aeration not only brings the iron in water in contact with dissolved oxygen but releases carbon dioxide also, thus the precipitation of the iron is hastened. Aeration and oxidation may be accomplished by means of sprays, cascades, perforated trays, contact beds of coke, broken pebbles, coal, or some such material.

Manganese is not oxidized as readily as iron and a method of treatment that may be effective for iron removal may not be satisfactory for manganese removal. Manganese may be oxidized by chlorine, and catalytic manganese dioxide (Zapffe, 1933) deposited on contact beds of coke, coal, crushed stone, and the like. Such treatment followed by filtration effectively removes manganese. Carefully planned treatment is necessary for satisfactory removal of both iron and manganese (Nordell, 1951.)

Cation-exchange units will remove iron and manganese from waters provided the iron and manganese are in the soluble reduced state. Any prior oxidation of the iron before the water enters the exchange unit will result in the deposition of oxidized iron on the exchanger, thus interfering with its effective action. These units are adaptable to the treatment of some well waters.

MUNICIPAL SOFTENING

Numerous data are available showing the value of the use of soft water and softened water supplies relative to soap consumption (Olson, 1939). The savings resulting from decreased soap consumption in many instances are sufficient to pay for the cost of softening the whole supply. Savings from decreased soap consumption is only one of the values resulting from the use of a softened public water supply. Many industries require soft process water and would be attracted to places where adequate supplies of such water are available.

The practice of softening of public water supplies is not new. (Baker, 1948.) It might be said as far as this country is concerned that it centered at Columbus, Ohio, because of the research carried on and the practices developed at the plant at that city. (Hoover, 1927, 1928, 1943.) The practice of softening public supplies has increased considerably since 1932. (Olson, 1945.)

A number of factors are involved in the proper selection of the method of softening water supplies, chief of which are the physical and chemical characteristics of the water and the extent of the reduction of the hardness. The softening process involves the removal by chemical precipitation or cation exchange of those substances in the water, principally calcium and magnesium, that cause hardness.

The larger municipalities use lime or the lime-soda ash process in softening their supplies. Lime is effective in removing carbonate hardness but soda ash in addition to lime is usually used to remove noncarbonate hardness. Excess lime serves the same purpose as soda ash in the excess lime treatment process. These methods of softening are used where the water generally requires filtration, volume demand is large, and competent technical supervision is provided.

Lime-softened waters are unstable (Hoover, 1942) being supersaturated with the normal carbonates of calcium and magnesium, and require recarbonation to prevent these carbonates from crystallizing out on the sand grains of a filter eventually destroying its effectiveness as a filter, or in the mains of the distribution system, lessening its capacity. When excess lime is used in the softening process, the softened water contains caustic alkalinity, and carbon dioxide is usually used to neutralize the excess lime. Phosphates are also used in stabilizing lime-softened waters.

The cation-exchange method of softening (Streicher and Bowers, 1950) involves the exchange of calcium and magnesium in the water for sodium in the exchange material. The exchange material when exhausted is regenerated with a solution of sodium chloride (common salt). Sea water or natural brines are used at a few plants. The operation of a cation-exchange softening plant requires less attention and less expert control than a lime or lime-soda ash softening plant. It is adaptable to those supplies where the water is relatively free of suspended matter and excessive quantities of iron and manganese and where the volume demand is not generally large.

It is not practical or desirable to soften a supply completely, although this is possible with a cation-exchange softener. At a few places this type of softener is used in conjunction with lime softening, employing what is known as split treatment. (Streicher, 1945.) Split treatment is used also in softening some groundwater supplies. In this method of treatment a portion of a supply may be completely softened by cation exchange, and then raw water, unsoftened water, or partially softened water may be mixed with it in such volume as to produce an effluent of a definite hardness.

Lime reduces the quantity of dissolved solids in water in the softening process; soda ash and cation exchangers do not.

The equipment required in water-softening plants using lime approximates that used in the filtrations plants of the rapid sand type. Greater facilities for handling chemicals are needed; some means for the production of carbon dioxide are required; and facilities for handling sludge are necessary. (American Water Works Assn., 1949). Some plants are recalcining the sludge and reusing the

lime or selling it for agriculture use.

Data in Water Supply Paper 658 in 1932 showed that of the 670 places in that report, 40 were furnished with softened water, representing a total population of 4,065,000, 7.2 percent of the total population of the 670 places, and 3.4 percent of the total population of the country. Data in table 11 of this report show that 171 places are furnished with softened water, representing a total population of 14,506,000, or 16.5 percent of the total population of the 1,315 places in this report and 9.6 percent of the total population of the country. Of the 670 places in Water Supply Paper 658 and also in this report, 85 places now have softened supplies. Thus 86 of the total of 171 places that have softened supplies are among the 645 places in this report but not in Water Supply Paper 658. These 645 places are small in population in comparison with the 670 places.

In this report the hardness of the public supplies that are softened ranges from less than 50 parts per million to about 150 parts. For many large supplies the hardness ranges between 70 and 85 parts. About one-third of the total population of the places in this report that receive softened water, receive water having a hardness greater than 100 parts per million. Many laundries and industrial plants require softer water than that furnished as public supplies and find it profitable and necessary to further soften. Municipalities can well afford to give more attention to softening of supplies to effect greater economies and satisfaction in the use of the water.

FLUORIDES AND FLUORIDATION

It was discovered about two decades ago that fluoride in drinking water caused the dental defect known as mottled enamel. (Churchill, 1931; Smith, Lantz, and Smith, 1931.) Through much study and observation as a result of this discovery the limit of fluoride concentration, below which mottling does not usually occur, was fairly well established. (Dean, 1936.) It was observed also that the prevalence of dental caries in areas where mottled enamel was endemic was no greater, in many instances less, than in areas where fluoride was not naturally present in the water supplies. (Dean, 1938.) Further study and observations along this line by Dean and his associates showed that there was a very definite relationship between fluoride in the water supplies and the prevalence of dental caries in the permanent teeth of children. (Dean, Jay, Arnold, and Elvove, 1941.) These and other studies showed that fluoride concentrations of about 1.0 to 1.5 parts per million in the water supplies, concentrations below which mottling of the enamel does not usually occur, greatly lessened the incidence of dental caries in the permanent teeth of children using the water. Other investigations showed also that fluoride compounds topically applied to the tooth surfaces of children's teeth lessened the incidence of caries (Knutson and Armstrong, 1943).

The results of these numerous studies and investigations naturally led to the question of fluoridation of water supplies in order to prevent or lessen the incidence of caries in the permanent teeth of children. Fluoridation has much support from dental and health associations. (Amer. Water Works Assn., 1952). In a news release of June 1, 1950, Assistant Surgeon General Bruce D. Forsyth of the U.S. Public Health Service, said:

"Artificial fluoridation of communal water supplies has been found to be effective in reducing the incidence and prevalence of dental caries among children as does water naturally containing fluorides. As a result of new evidence from its Grand Rapids project where community water has been fluoridated since January 25, 1945, the Public Health Service has now altered its basic policy to read: 'Using scientific methods and procedures, communities desiring to fluoridate their communal water supplies should be strongly urged to do so' ".

The compounds now most generally used for fluoridating public water supplies are sodium fluoride and sodium silicofluoride. Sodium fluoride is much more soluble than sodium silicofluoride, but it is much more costly per unit weight. Hydrofluosilicic acid is less frequently used, and hydrofluoric acid is rarely used. Because hydrofluoric acid is highly corrosive, its application requires considerable care.

The quantity of fluoride added to the water supply is such that the concentration as the fluoride ion generally ranges between 0.7 and 1.3 parts per million. The quantity of fluoride ingested by an individual will depend upon the quantity of water used by the individual and the fluoride content of the water. This quantity is further related to climatic conditions and the characteristics of the individual as to need for water. Some supplies may require only 0.7 part per million, whereas others may require nearly up to the permissible maximum of 1.5 parts. (U. S. Public Health, 1946.) The quantity of fluoride naturally present in the supply must be taken into account in fluoridating the supply. Some fluoride is removed by alum in the coagulation process in the regular treatment of public supplies and a larger quantity if the supply is softened, therefore, the application of the fluoride should be at such place in the treatment scheme so as not to be removed.

The practice of fluoridation has gained considerable impetus in the past 2 years (1951-52). At the time of the collection of most of the data on the supplies for the places in this report about 70 supplies were being fluoridated or facilities were under construction for fluoridating. However, since the collection of the data, and as of the end of the year 1952, reliable statistics (Amer. Water Works Assn., 1953) indicate that of the places in this report 155 were receiving fluoridated water, representing a population of about 12 million people or about 14 percent of the total population of all the places included in this report.

Table 17 shows the number of places and the population using water with different concentrations of fluoride from large public supplies at the time of the collection of these data. The table shows among other things that about 85 percent of the total population of the places in this report used water with a concentration of fluoride in the range of 0.0 to 0.5 part per million. A population of about 7 million people used water with a concentration of fluoride in the range of 0.6 to 1.5 parts per millions. Such a range of concentration of fluoride will include practically all those supplies that were being fluoridated at the time and in addition those supplies with natural fluoride of that range of concentration.

Table 17 Number of places and population,	in thousands, using water with dif-
ferent quantities of fluoride from large public	supplies in the United States, 1952

	Surface	supplies	Ground	supplies	Mixed s	supplies	Ali su	pplies	Per-
Fluoride (ppm)	Places	Popu- lation	Places	Popu- lation	Places	Popu- lation	Places	Popu- lation	cent of total
<0.6	628	55,604	368	10,661	117	8,538	1,113	74,803	85. 2
.6 - 1.0	39	3,991	56	2,120	6	132	101	6,243	7.1
1.1 - 1.5	10	412	16	302	3	52	29	766	.9
1.6 - 2.0	2	. 34	9	164			11	198	. 2
2.1 - 3.0	1	65	5	149			6	214	. 2
>3.0			6	136			6	136	. 2
Not re-									
ported	31	4,238	12	863	6	365	49	5,466	6.2
Total	711	64,344	472	14,395	132	9,087	1,315	87,826	100

INDUSTRIAL TREATMENT OF WATER FROM PUBLIC SUPPLIES

The treatment that is given to a public water supply is planned primarily to give a water that is safe to drink and that is free from pathogenic bacteria, without too much regard for other uses of the water. The water may be generally satisfactory for most domestic uses, but many public supplies are far from satisfactory for many industrial uses. The additional treatment that may be required may range from almost nothing to that which includes sand filtration, softening, and corrosion control.

BOILER FEED WATER

One of the common uses of water from public supplies is in steam boilers for

the production of power and heat. Large boilers carrying high steam temperatures and pressures require water of rather exacting standards of quality. Table 18 suggests quality-tolerance limits for boiler-feed waters.

Table 18Suggested water-quality tolerance for boiler-feed water a

	Allowable limits, in parts per million, for indicated pressure in lb/sq. in.					
	<150	150-250	250-400	> 400		
Oxygen consumed	15	10	4	3		
Dissolved oxygen b/	1.4	. 14	.0	.0		
Hydrogen sulfide (H ₂ S)	<u>c</u> /5	<u>c</u> /3	0	0		
Total hardness as CaCO,	80	40	10	2		
Aluminum oxide (Al ₂ O ₃)	5	. 5	. 05	.01		
Silica (SiO ₂)	40	20	5	1		
Bicarbonate (HCO ₃) <u>b</u> /	50	30	5	. 0		
Carbonate (CO ₃)	200	100	40	20		
Hydroxide (OH)	50	40	30	15		
Total solids <u>d</u> /	3,000-500	2,500-500	1,500-100	50		
Turbidity	20	10	5	1		
Color	80	40	5	2		
Sulfate-carbonate ratio		}		1		
(A. S. M. E.) $(Na_2SO_4:Na_2CO_3)$	1:1	2:1	3:1	3:1		
pH value (minimum)	8.0	8.4	9.0	9.6		

a/Moore, E. E., Progress report of the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 263, 1940.

The treatment of boiler water has received much attention generally. Details on the methods of treating water supplies for boiler feed, and on boiler-operating practices are found in books and papers on the subject. (Brown, 1946; Betz, 1953).

SCALE, CORROSION, EMBRITTLEMENT, FOAMING, AND PRIMING

Scaling in boilers and indirectly hardness in water supplies receive much attention in the treatment of boiler-feed waters. Scale consists of mineral deposits on boiler surfaces; it is composed principally of compounds of calcium and magnesium with usually smaller quantities of other substances such as silica and iron. Mineral matter in the boiler-feed water becomes greatly concentrated in the boiler; slightly soluble substances precipitate, and under the influence of heat, may be baked on the boiler surfaces as scale or carried as sludge in the boiler water.

Scale formed as a result of carbonate hardness in the water is usually more porous and less adherent than the scale formed as a result of noncarbonate-hardness minerals. Both may become hard and adherent because of the presence of some cementing material like silica or from conditions prevailing in the boiler. Silica scale, itself, is hard and adherent and of low thermal conductivity. Much use is made of phosphate compounds in the treatment of boiler waters in scale prevention and control. Silica may be removed by magnesium compounds in conjunction with hot lime or hot lime-soda softening.

Corrosion would result in a boiler from the use of a water containing noncarbonate hardness caused by the chlorides and nitrates of calcium and magnesium or by free acid. Such waters are rarely served to the public or used in boilers

b/Limits applicable only to feed water entering boiler, not to original water supply.

c/Except when odor in live steam would be objectionable.

d/Depends on design of boiler.

without treatment. Dissolved gases—oxygen, carbon dioxide, ammonia—originally present in the boiler water, in the returned condensate, or formed as a result of the treatment, may corrode boilers. These gases may be removed by aeration or by daerating heaters. Controlled "causticity" or hydroxide concentration in boiler waters is important in the prevention of corrosion.

"Caustic embrittlement" or cracking of the boiler plate, a controversial subject for many years, may result from maintaining too high a causticity in the boiler water or from the use of waters containing considerable quantities of sodium bicarbonate or carbonate either originally present or as a result of treatment. It has been regarded by some as fundamentally due to poor boiler construction. The development of the embrittlement detector by the U.S. Bureau of Mines has facilitated the study of caustic embrittlement. (Schroeder and Berk, 1941.)

To prevent this type of failure, emphasis was formerly placed on the proper ratio of sulfate to carbonate in the boiler water; later investigations, however, have shown that the recommended ratios may not necessarily protect against embrittlement. (Berk and Schroeder, 1943.) Sodium nitrate and quebracho tannin (Bureau of Mines, 1951) are successfully used to prevent this type of failure. Simultaneous control of pH and of phosphate concentration in the boiler water may prevent embrittlement and is applicable where the water is primarily evaporated makeup or condensate.

Foaming and priming, associated activities in boiler waters, are attributed to a number of causes, some of which may be in the structural design and operation of the boiler itself. Foaming is generally attributed to too great a concentration in the water of soluble compounds of sodium and the presence of finely divided solids in suspension in the water. The standard method of controlling this condition, although sometimes not the most economical, is by blowdown to reduce the concentration of dissolved solids and to remove some of the sludge. Effective organic antifoam agents, such as polymerized esters, alcohols, and amides, have been developed in recent years. The insolubility of some of these agents in water makes it necessary to disperse them with other agents in feeding. Priming is usually the result of careless operation of the boiler.

SOFTENING

Municipal supplies when softened with lime and soda ash may contain anywhere from 25 to 100 parts per million or more of hardness. It is possible with the use of the cation-exchange type of softener to produce a completely softened water. However, for economical reasons this is rarely done in practice, except in the split treatment or in conjunction with lime softening. Many municipal supplies, even when softened, therefore, require softening for satisfactory use in boilers. The methods of softening employed may be hot lime, hot lime-soda ash, hot phosphate, and cation exchange. The method selected depends upon a number of factors, chief of which are character of the water, volume of water required, further treatment necessary after softening, and the conditions under which the boilers are operated.

INTERNAL TREATMENT

The practice of introducing chemicals in the water within the boiler to condition the water or make its use possible is known as internal treatment. (Blanning and Rich, 1934.) The practice began because of the inadequacy, in part, of the lime-soda softening or because of no treatment at all of waters used in boilers. Hardly any external treatment is adequate protection against scale formation of some kind; therefore the necessity for internal treatment.

These boiler compounds are both inorganic and organic in composition. They are used for the control of concentrations of carbonate and silica to prevent scale formation, corrosion, and such. The phosphate compounds, for example, are much used in the treatment of water that has already been softened with lime and

soda ash, or not softened at all, to further soften it and to prevent the formation of calcium scale in the boiler. Organic compounds such as tannin, lignin, agar, and starches are used in internal treatment. They are thought to have a dispersing action on inorganic precipitates or to exert to some extent a coating action on inorganic precipitates, decreasing their tendency to cohere and also adhere to the boiler surface.

Internal treatment may be used successfully where the water supply is only moderately hard and the boiler is operated at a moderate pressure and not at too high a rating. Internal treatment, rather than being a "cure all" for boiler operation difficulties, should supplement the rather thorough external treatment of the boiler water.

WATER FOR INDUSTRIAL PROCESSES

The use of huge volumes of water by industry demonstrates the extreme importance of water to industry, whether the water is used as an ingredient in the production of other materials, as a cleansing agent, or for cooling. Each industry requires a process water of characteristics peculiar to that industry, therefore, the requirements as to quality of process water are so varied that a water or a method of treatment that is entirely adequate for one process may not be suitable for another. (Nordell, 1951.) The following tables set forth some requirements as to both quantity and quality of water for a number of industrial uses.

Table 19. -- Industrial requirements for water a/

	Table 19Indus	trial requirements	for water a/		
Ite m	Unit	Water required (gal. per unit)	Item	Unit	Water required (gal. per unit)
Airplane engine	to test	50,000-125,000	Milk:	1	
Alcohol	gal	100	Receiving station	n I	(180
Aluminum	ть	160	Bottling works		250
Aviation gas	gal	7-10	Cheese factory	11	200
Brewing:		\	Creamery	1,000 raw lb	110
Beer	1 bol	470	Condensery	[]	150
Whiskey	gal	80	Dry milk factory.		150
Buildings:	8		General dairy	lj l	340
Office	person	b/27-45	Oil, edible	gal	22
Hospital	bed	b/135-350	Oil field	100 bbl. crude	18,000
Hotels	guest room	b/350-525	Oil refining	100 bbl	77,000
Laundries:	8		Paper:		-
Commercial	lb. "work"	4.3-5.7	Paper mill	h	(39,000
Institutional	lb. "work"	3	Pasteboard	1 ton	14,000
Restaurants	meal	0.5-4.0	Strawboard	}	26,000
Butadiene	lb	160	Deinking	l) i	83,000
Canning:	10		Paper pulp:	1	
Apricots	h	8,000	Ground wood		5,000
Asparagus	11	7,000	Soda		85,000
Beans:	11	.,,,,,	Sulfate	1 ton dry	J 64,000
Green	11	3,500	Sulfite	1	60,000
Lima	11	25,000	Poultry	1 bird	b/1
Pork and	11	3,500	Rail freight	ton-mile	0.1
Beets	11	2,500	Records	1 disc	2.4
Corn	11	2,500	Smokeless powder	ton	50,000
Grapefruit:	11	.,	Soap factories	ton	500
Juice	11	500	Steam power	tou of coal	c/60,000-120,000
Sections	100 cases No. 2 cans	5,600	Sugar refineries	lb	0.5
Peaches, pears	11	6,500	Tanning:		
Peas	<u> </u>	2,500	Vegetable	160 lb. raw hide	800
Pumpkin, squash	11	2,500	Chrome	100 lb, raw hide	800
Sauerkraut	[]	300	Textile:		
Spinach	H	16,000	Cotton:	h :	ſ
Succotash	H	12,500	Sizing ,		820
Tomatoes:	u	11 ' 1	Desizing	()	1,750
Products	H	7,000	Kiering	11	1,240
Whole	II.	750	Bleaching		300
Cement	Pton	750	Souring		3,400
Coke	100 tons	360,000	Mercerizing		30,000
Distilling, grain:	1		Dyeing:	11	1
Combined wastès	h		Basic	1,000 lb. processed	
Thin slop	1,000 bu. grain	600,000	Direct	11	6,400
Tailings		· 1	Vat		19,000
Evaporator condensate .	mashed	1	Sulfur	11	5,400
Distilling, molasses	1,000 gal. 100 proof	8,400	Developed		14,400
Distilling, cooling water	1,000 gal. 100 proof	120,000	Naphthol		4,800
Electric power	kw	80	Aniline black	11	15,600
Explosives	lb	100+	Print works	U	4,500
Gasoline	gal	7-10	Finishing	ĮJ .	6
Iron ore (brown ore)	ton	1,000	Knit goods	lb, bleached	
Meat:	1		Rayon manufacture.	1,000 lb. produced.	135,000-160,000
Packing house	100 hogs killed	550	Rayon hosiery	1,000 produced	9,000
Slaughterhouse	100 hogs killed	550	Woolens	1,000 lb. finished	70,000
Stockyards	1 acre	160	1	1	
			+		· · · · · · · · · · · · · · · · · · ·

a/Jordan, H. E., Industrial requirements for water: American Water Works Assoc., v. 38, p. 66-67, 1946.

c/60,000 for recirculating systems, 120,000 for nonrecirculating systems.

	(Allowable limits in parts per million)									
Industry or use	Turbid- ity	Color	Hardness as CaCO,		Manga- nese (Mn)	Total solids	Alkalinity as CaCO,	Odor, Taste	Hydro- gen sulfide	Other requirements b/
Air conditioning				c/0.5	0.5			low	1	No corrosiveness, slime formation.
Baking	10	10		c/.2	. 2			low		P.
Brewing:	1	1	1					10		
Light beer	10			c/.1	.1	500	75	low	. 2	P. NaCl less than 275 ppm (pH 6.5-7.0.)
Dark beer	10		i	c/.1	l i	1,000	150	low	.2	P. NaCl less than 275 ppm (pH 7.0 or
Dui 11 4401			l	2	٠- ا	-, 000				more).
Canning:	1				l			1		
Legumes	10		25-75	<u>c</u> /.2	.2			low	1	P.
General	10	١		c/. 2	.2			low	l i	P.
Carbonated		l	l	20					1 -	- '
beverages	2	10	250	. 2	.2	850	50-100	low	.2	P. Organic color plus oxygen consumed
	1 -				1		00-100			less than 10 ppm.
Confectionery				c/.2	. 2	100		low	. 2	P. pH above 7.0 for hard candy.
Cooling	50			c/.5	.5				5	No corrosiveness, slime formation.
Food: General	10		3-	c/. 2	.2			low	J	P.
Ice	5	5		c/.2	. 2			low		P. SiO, less than 10 ppm.
Laundnring	J		50	c/.2	1 2		::	10W		P. SiO ₂ less than to ppm.
Plastics, clear,			30	2/.2						
uncolored	2	2		c/. 02	.02	200		ĺ	l	
Paper and pulp:	-	-		£/.02	.02	200				!
Groundwood	50	20	180	c/1.0	.5		i	ĺ		No suit commentered
	25	15								No grit, corrosiveness.
Kraft pulp	15			c/.2	.1	300 200				
Soda and sulfite	12	10	100	<u>c</u> /.1	. 05	200				
High-grade	_ ا	ا ا					ł			
light papers	5	5	50	<u>c</u> /. 1	. 05	200				
Rayon (viscose):	_ ا		_							
Pulp production	5	5	8	<u>c</u> ∕. 05	. 03	100	total 50;		••	Al ₂ O ₃ less than 8 ppm, SiO ₂ less than 25
							hydroxide 8			ppm, Cu less than 5 ppm.
Manufacture	. 3		55	.0	.0					pH 7.8 to 8.3,
Tanning	20	10-100	50-135	ç/.2	. 2		total 135;			
	1 -			_			hydroxide 8			
Textiles: General	5	20		. 25	. 25					
Dyeing	5	5-20		ç∕. 25	. 25	200				Constant composition. Residual alumina
			1							less than 0.5 ppm.
Wool scouring		70		<u>c</u> /1.0	1.0					
Cotton bandage	5	5		c/.2	. 2			low		

Table 20. -- Suggested water-quality tolerances a/
(Allowable limits in parts per million)

a/Moore, E. W., Progress report of the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 271, 1940.
b/P indicates that potable water, conforming to U. S. Public Health Service standards, is necessary. c/Limit given applies to both iron aione and the sum of iron and manganese.

Water that is used in the processing of foods and beverages must be safe for drinking, that is, free of pathogenic bacteria. Water that is used in washing and rinsing of food products prior to the actual processing should be free of pathogenic bacteria and other organisms that might subsequently cause food spoilage.

The most common improvement made in water from public supplies for use in industrial processes is softening. Softening may be accomplished by the methods used for boiler waters plus any other treatment necessary to meet specific requirements. Softening by cation exchange is practicable and profitable for laundries.

Water used for baking should be free of substances that might produce undesirable tastes, odors, and colors. Too much hardness in the water retards fermentation processes, although some calcium is necessary for some yeast action, and too little softens the gluten resulting in soggy bread. Water of zero hardness is used in making certain bakery products.

The quality of the water used in brewing (Pozen, 1940) affects considerably the final product. Waters low in alkalinity and comparatively high in calcium sulfate are desirable. Moderate quantities of chlorides also seem to be beneficial. Water used in the production of carbonated beverages should be free of suspended matter, color, tastes and odors, iron, manganese, and must be low in alkalinity because of the acid nature of the product. (Gullo, 1951.)

Process water for canning and freezing of foods should be free of tastes and odors, color, organic matter, iron, and manganese. Hardness causes toughening of some foods, such as peas and beans, and may cause deposits on others. (Lancefield, 1938,)

Water used in the manufacture of ice should be free of iron, manganese, tastes and odors, and should be low in dissolved solids. (West, 1944.) Calcium and magnesium can be rather easily removed, but the remaining salts are almost as troublesome as calcium. The use of demineralizing resins or distillation may be resorted to in order to remove certain elements not removed in ordinary treatment. The upper concentrations limits of minerals in water used in ice manufacture will depend to some extent on the practices followed in the actual freezing process itself.

Process water used in the manufacture of textiles and fine paper should be practically free of suspended matter, color, iron, and manganese. Iron and manganese cause staining, and color may be adsorbed resulting in an inferior product (Miller, 1944). Hardness interferes in washing operations, dyeing of fabrics, and in sizing of paper, although it is reported that some hardness is desirable in water used for scouring of wool.

Corrosion and scaling would result from the use of many public water supplies in cooling systems (Powell, 1948.) Corrosion may be lessened by the adjustment of the pH of the supply and the use of protective coatings for the pipes. Scale formation may be minimized by the use of organic inhibitors such as tannin or by treatment with phosphates and silicates.

DOMESTIC TREATMENT OF WATER FROM PUBLIC SUPPLIES

The treatment given to public water supplies undoubtedly is receiving more attention today than ever before. Domestic users and industry in general have more or less indirectly demanded this increased attention to treatment. The sanitary conditions of many streams and lakes are such that increased treatment of the supplies is required to make them satisfactory as public supplies. Many public supplies may be further improved by treatment for household use.

Hardness is objectionable in many public supplies and the installation of domestic softeners is often desirable as a matter of economy and satisfaction in the use of the water. The savings resulting from softening in decreased soap consumption, smaller plumbing repair bills, and longer life of hot-water heating equipment often more than pay for such equipment. Even where public supplies are softened in very hard water areas it is often desirable to further soften them in the home.

The cation-exchange type of softener is especially adapted for use in homes. Low cost of installation and simplicity of operation, in some types automatic, are attractive features, aside from the fact of being capable of delivering completely softened water which is so desirable in cleaning and laundering. The sodium cation exchanger in operation removes calcium and magnesium from the water in exchange for the sodium in the exchange material. This reaction is reversible. When the exchange material's capacity for softening is exhausted, it is regenerated by treating the exchange material with a solution of sodium chloride(common salt). Sodium from the salt solution is taken up by the exchange material and calcium and magnesium are released. Excess salt solution is washed out and the exchanger is ready again for softening.

Where public supplies are not softened, softening or conditioning agents, such as ammonia, borax, sodium carbonate, and such are much used in cleansing and laundering in the home. Trisodium sodium phosphate under various trade names is much used in this respect. Synthetic detergents, "soapless soaps", have recently been developed and are finding special application not only in the home but in industry as well. These agents, in common with soaps, possess properties of wetting, dispersing, and emulsifying, although they may not be equally effective for all three purposes. They are produced in greater variety than soaps, more specifically suited to an express purpose under a variety of conditions, are finding ready markets, and are replacing soaps for many purposes. (Larson, 1949.)

Home equipment is available from plumbing establishments and manufacters of water-conditioning equipment for control of corrosion in water pipes to prevent "red water" troubles. Most of these are designed to raise the pH of the water supply to make it less aggressive to metal surfaces.

Equipment or devices for elimination of tastes and odors may be used to some extent in homes, although it is not generally practicable to do much in a home to improve the taste or odor of a public supply.

PUBLICATIONS

The following reports contain information relating to the quality of the surface water of the United States and to the public water supplies of the United States and of several States. The reports were prepared by the U. S. Geological Survey or by the Survey with cooperating State agencies. Most of the reports listed are available for consultation in the larger public and institutional libraries. Copies of Geological Survey publications, except circulars, still in print may be purchased from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., who will furnish lists and prices upon request. Publications out of print are preceded by an asterisk. Circulars may be obtained free of charge on application to the Director, U. S. Geological Survey, Washington 25, D. C., as long as stocks are available.

WATER-SUPPLY PAPERS

- 658. The industrial utility of public water supplies in the United States, 1932.
- 912. Industrial utility of public water supplies in Georgia, 1940.
- 942. Quality of surface waters of the United States, 1941.
- 950. Quality of surface waters of the United States, 1942.
- 970. Quality of surface waters of the United States, 1943.
- 1022. Quality of surface waters of the United States, 1944.
- 1030. Quality of surface waters of the United States, 1945.
- 1047. Public water supplies in Eastern Texas.
- 1050. Quality of surface waters of the United States, 1946.
- 1069. Public water supplies in Central and North-Central Texas.
- 1070. Public water supplies in Southern Texas.
- 1102. Quality of surface waters of the United States, 1947.
- 1106. Public water supplies in Western Texas.
- 1132. (Parts 1-6) Quality of surface waters of the United States, 1948.
- 1133. (Parts 7-14) Quality of surface waters of the United States, 1948.
- 1162. (Parts 1-6) Quality of surface waters of the United States, 1949.
- 1163. (Parts 7-14) Quality of surface waters of the United States, 1949.

COOPERATIVE REPORTS

Public water supplies of Arkansas. Research Series No. 11, Univ. of Arkansas, Bureau of Research, Fayetteville, Ark. 1947.

Public surface-water supplies in North Carolina, Progress report No. 1, North Carolina State Board of Health, Raleigh, N. C. 1947.

Public ground-water supplies in North Carolina, Progress report No. 2, North Carolina State Board of Health, Raleigh, N. C. 1949.

Public water supplies in Oklahoma. Oklahoma Planning and Resources Board, Oklahoma City, Okla. 1951.

Circ. 287. Public and industrial water supplies of the Jackson Purchase Region, Ky.

Circ. 299. Public and industrial water supplies of the Blue Grass Region, Ky.

U. S. GEOLOGICAL SURVEY CIRCULARS

- *197. The industrial utility of public water supplies in the East South Central States. 1952.
- *203. The industrial utility of public water supplies in the Mountain States, 1952.
- *206. The industrial utility of public water supplies in the West North Central States, 1952.

- *221. The industrial utility of public water supplies in the West South Central States, 1952.
- *232. The industrial utility of public water supplies in the Pacific States, 1952.
- *253. The industrial utility of public water supplies in the East North Central States, 1952.
- *269. The industrial utility of public water supplies in the South Atlantic States, 1952.
- *283. The industrial utility of public water supplies in the Middle Atlantic States, 1952.
- *288. The industrial utility of public water supplies in the New England States, 1952.

REFERENCES

- American Public Health Association, 1946, Standard methods for the examination of water and sewage, 9th ed., New York, N. Y.
- American Society for Testing Materials, 1940, A review of data on the relationship of corrosivity of water to its chemical analysis: Am. Soc. for Testing Mat., Proc., v. 40, p. 1317.
- ——1947, Standards Part III-A, Nonmetallic Materials, 1946; Am. Soc. for Testing Mat., Philadelphia, Pa.
- American Water Works Association, 1949, Disposal of softening plant wastescommittee report: Am. Water Works Assoc. Jour., v. 41, p. 819.
- Committee report, 1953, Census of fluoridation in the United States and Canada, 1952: Am. Water Works Assoc. Jour., v. 45, no. 8.
- American Water Works Association, Inc., 1950, Water quality and treatment 2d ed.: New York, N. Y.
- ———1952, Fluoridation of public waters supplies: Willing Water, no. 19, New York, N. Y.
- Aston, Royden N., 1950, Developments in the chlorine dioxide process: Am. Water Works Assoc. Jour., v. 42, p. 151.
- Baker, M. N., 1948, The Quest for pure water: Am. Water Works Assoc., New York, N. Y.
- Baylis, John R., 1937, Silicates as aids to coagulation: Am. Water Works Assoc. Jour., v. 29, p. 1355.
- Berk, A. A., and Schroeder, W. C., 1943, Am. Soc. Mech. Eng. Trans., v. 65, p. 701.
- Betz, W. H. and L. D., 1953, Handbook, Industrial water conditioning, 4th ed.: Philadelphia, Pa.
- Black, A. P., 1948, The chemistry of water treatment: II Softening: Water & Sewage Works, v. 95, p. 211.
- Blanning, H. K., and Rich, A. D., 1934, Boiler feed and boiler water softening: Nickerson & Collins Co., Chicago.
- Brown, K. W., 1946, Boiler water quality and treatment: Am. Water Works Assoc. Jour., v. 38, p. 973.
- Churchill, H. V., 1931, Occurrence of fluorides in some waters of the United States: Ind. and Eng. Chemistry, v. 23, p. 996-998.
- Connors, J. J., 1950, Advances in chemical and colorimetric methods: Am: Water Works Assoc. Jour., v. 42, p. 33.
- Dean, H. T., 1936, Chronic endemic dental fluorosis: Am. Med. Assoc. Jour., v. 107, p. 1269-1272.
- Dean, H. T., Jay, Philip, Arnold, F. A., Jr., and Elvove, Elias, 1941, Domestic water and dental caries: Public Health Reports, v. 56, p. 716.
- Enslow, L. H., 1939, The continuoùs stability indicator: Water Works & Sewage, v. 86, p. 107.
- Goldman, Louis, 1951, Boiler-water treatment manual for federal-plantoperators: Bureau of Mines, Handbook 5.

- Gullo, Stephen J., 1951, Water requirements for soft drink industry and quality control: Pepsi-Cola Company.
- Hay, Harold R., 1944, Water purification methods involving sodium silicates: Am. Water Works Assoc. Jour., v. 36, p. 626.
- Hazen, Allen, 1892, A new color standard for natural waters: Am. Chem. Jour., v. 12, p. 427-428.
- Hoover, C. P., 1927, Use of lime in water softening and purification: Ind. and Eng. Chem. v. 19, p. 567-570.
- -1928, Developments in water softening: Am. Water Works Assoc. Jour., v. 20, p. 642-652.
- -1942, Stabilization of lime-softened waters: Am. Waters Works Assoc. Jour., v. 34, p. 1425.
- -1943, Water supply and treatment, 5th ed.: Natl. Lime Assoc., Bull. 211, Washington, D. C.
- Hopkins, Edward S., 1948, Water purification control 3d ed.: Wilkins Co., Baltimore, Md.
- Howard, C. S., 1933, Determination of dissolved solids in water analyses: Ind. and Eng. Chemistry, Anal. ed., v. 5, p. 4-6.
- Knutson, John W., and Armstrong, Wallace D., 1943, The effect of topically applied sodium fluoride on dental caries experience: Public Health Reports, v. 58, p. 1701-1715.
- Lancefield, S., 1938, Water for the canning factory: Am. Water Works Assoc. Jour., v. 30, p. 167.
- Langelier, W. F., 1936, The analytical control of anti-corrosion water treatment: Am. Water Works Assoc. Jour., v. 28, p. 1500-1521.
- -1946, Chemical equilibria in water treatment: Am. Water Works Assoc. Jour., v. 38, no. 2.
- Larson, T. E., 1949, Synthetic detergents: Am. Water Works Assoc. Jour., v. 41, p. 315-321.
- Miller, L., 1944, Water for textile processing, quality and treatment: Cotton, v. 108, 7, p. 85.
- Nordell, Eskel, 1951, Water treatment for industrial and other uses: Reinhold Publishing Corp., New York, N. Y.
- Olson, H. M., 1939, Benefits and savings from softened water for municipal supply: Am. Water Works Assoc. Jour., v. 31, p. 607.
- -1945, 1944 Census of U. S. municipal water softening plants: Am. Water Works Assoc. Jour., v. 37, no. 6.
- Pallo, Peter E., 1948, Cathodic protection of steel water tanks: Am. WaterWorks Assoc. Jour., v. 40, p. 495.
- Powell, S. T., 1948, Some aspects of the requirements for the quality of water for industrial uses: Sewage Works Jour., v. 20, p. 36.
- Powell, S. T., Bacon, H. E., and Lill, J. R., 1946, Recent developments in corrosion control: Am. Water Works Assoc. Jour., v. 38, p. 169.
- Powell, S. T., and Burns, H. S., 1936, Vacuum deaeration: Chem. and Met. Eng., v. 43, p. 180.
- Pozen, M. A., 1940, Water in the brewery: Mod. Brew. Age, v. 23, p. 67. Rice, O., 1947, Corrosion control with Calgon: Am. Water Works Assoc. Jour., v. 39, p. 503.
- Schroeder, W. C., and Berk, A. A., 1941, Intercrystalline cracking of boiler steel and its prevention: U. S. Bureau of Mines Bull, 443.
- Smith, M. C., Lantz, E. M., and Smith, H. V., 1931, The cause of mottled enamel, a defect of human teeth: Ariz. Univ. Agr. Exper. Sta. Tech. Bull. 32.
- Speller, F. N., 1951, Corrosion, causes and prevention: 3d ed.: McGraw-Hill Book Co., New York.
- Streicher, Lee, 1945, Operating experiences at La Verne softening plant: Am. Water Works Assoc. Jour., v. 37, no. 5.
- Streicher, Lee, and Bowers, A. E. 1950, Cation exchangers for municipal water softening: Am. Water Works Assoc. Jour., v. 42, p. 81.
- U. S. Geological Survey, 1902, Div. Hydrography Circ. 8.

- U. S. Public Health, 1946, Drinking water standards: Public Health Reports, v. 61, p. 11. (Reprint no. 2697.)
- U. S. Public Health Service, 1948, Inventory of water and sewage facilities in the United States: Cincinnati, Ohio.
- Waring, F. Holman, 1949, Significance of nitrates in water supplies: Am. Water
- Works Assoc. Jour., v. 72, no. 2.
 West, Philip W., 1944, The ice industry: Chemical and Engineering News, v. 22, p. 718.
- Zapffe, Carl, 1933, The history of manganese in water supplies and methods for its removal: Am. Water Works Assoc. Jour., v. 25, p. 655.

DESCRIPTIONS AND ANALYSES OF PUBLIC WATER SUPPLIES IN THE STATES WEST OF THE MISSISSIPPI RIVER

ARIZONA

AMPHITHEATER (Population, 12, 664)

Ownership: (See Tucson.)

DOUGLAS

(Population, 9,442)

Ownership: Municipal; supplies also suburban area and can supply water to Agua Prieta, Mex. (population, estimated 6,000) in emergencies. Total population regularly served, about 21,000.

Source: 6 wells. Five closely spaced wells, each 340 ft deep, near Phelps Dodge Corp. smelter, 1 mile west of town; 1 well, 320 ft deep, in Overlock addition. The yield of each of the wells is reported to be 1,000 gpm. Three wells are regularly used and the other three are held in reserve for emergencies. Most of the supply comes from the main well field.

Treatment: None.

Storage: Elevated tanks, 900,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Main well field a	Overlock addition well		Main well field a	Overlock addition well
Silica (SiO ₂)	21	27	Hardness as CaCO ₃ :		
Iron (Fe)	.28	.07	Total	25	176
Manganese (Mn)			Noncarbonate	0	0
Calcium (Ca)	6.2	41			
Magnesium (Mg)	2.4	18	Color	0	0
Sodium (Na)	325	46	pH	8.9	7.7
Potassium (K)	2.8	3.0	Specific conductance		
Carbonate (CO ₃)	21	0	(micromhos at		
Bicarbonate (HCO ₂)	130	239	25 C.)	1,600	530
Sulfate (SO ₄)	183	55	Turbidity		
Chloride (Cl)		14	Temperature (F.)	76	73
Fluoride (F)	3.2	1.0	Date of collection	Sept. 12,	Sept. 12,
Nitrate (NO ₃)	1.8	12	1	1951	1951
Dissolved solids	930	330			

a Composite.

FLAGSTAFF (Population, 6, 771)

Ownership: Municipal; serves also suburban areas. Total population served, about 11,000.

Source: Lake Mary (storage reservoir in Walnut Canyon, $8\frac{1}{2}$ miles southeast of Flagstaff). Additional supply from spring flow and small amount of surface runoff entering two 50,000,000 gal equalizing reservoirs north of city.

Treatment: Lake Mary supply: Coagulation with alum, activated carbon, sedimentation, rapid sand filtration, chlorination, and final adjustment of pH with lime. Spring supply: chlorination. Copper sulfate is added at times to control algae.

Rated capacity of treatment plant: 1,700,000 gpd. Raw-water storage: Lake Mary, 8,000,000,000 gal.

Finished-water storage: Equalizing reservoirs, 100,000,000 gal.

ARIZONA 51

FLAGSTAFF--Continued

Finished water from Lake Mary supply enters the equalizing reservoirs during periods of low consumption and is mixed with spring flow before use. About two-thirds of the total supply was obtained from Lake Mary in 1950. The proportion obtained from the two sources varies from year to year.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

Lake Mary	Lake Mary	Springs (raw water)
\- · · · · · · · · · · · · · · · · · · ·		
4.4	2.7	15
1.1	. 16	.02
8.6	19	3.4
3.7	4. 2	.8
	1.8	1.4
1.8	1.7	3. 2
0	0	0
37	40	15
5.6	30	3.0
. 8	2, 2	.8
. 3	.1	. 4
. 4	.3	1. 9
67	88	36
37	65	12
6	32	0
	4	3
7. 1	8.0	6.8
73. 2	139	37.4
100		
38	39	58
Feb. 5, 1952	Feb. 5, 1952	July 31, 1951
	(raw water) 4.4 1.1 8.6 3.7 2.0 1.8 0 37 5.6 .8 .3 .4 67 37 6	(raw water) (finished water) 4.4 2.7 1.1 .16 8.6 19 3.7 4.2 2.0 1.8 1.8 1.7 0 0 37 40 5.6 30 .8 2.2 .3 .1 .4 .3 67 88 37 65 6 32 55 4 7.1 8.0 73.2 139 100 38 39

GLENDALE (Population, 8, 179)

Ownership: Municipal; serves also suburban areas. Total population served, about 12,000.

Source: 5 wells (1 to 5) 1,710, 1,000, 700, 700, and 810 ft deep. The yield of the wells is reported to be 1,200, 700, 500, 350, and 600 gpm. Well 5 is held in reserve for emergencies.

Treatment: Chlorination.

Raw-water storage: None.

Finished-water storage: 450,000 gal.

Partial analyses of samples indicate that the water from wells 2 and 4 is similar in chemical composition to that of well 3; that from well 5 is high in dissolved solids and nitrate.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1	Well 2		Well 1	Well 2
Silica (SiO ₂)		23	Hardness as CaCO ₃ :		
Iron (Fe)		.00	Total	65	150
Manganese (Mn)			Noncarbonate	0	36
Calcium (Ca)	19	27			
Magnesium (Mg)	4.2	20	Color	2	2
Sodium (Na)	h		pH	8.1	7.8
Potassium (K)	121	61	Specific conductance		
Carbonate (CO ₂)	0	0	(micromhos at		
Bicarbonate (HCO.)	85	138	25 C.)	713	578
Sulfate (SO ₄)	94	55	Turbidity		
Chloride (Cl)	111	73	Temperature (F.)	95	78
Fluoride (F)		.6	Date of collection	Sept. 19,	Sept. 19,
Nitrate (NO)		7.8		1951	1951
Dissolved solids		334			
Depth (feet)				1,710	700
Diameter (inches)	16	16			
Date drilled					
Percent of supply	40	20			
rescent of suppry	••••••	•••••	***************************************	10	

GLOBE

(Population, 6,419)

Ownership: Municipal; supplies also suburban area outside the city limits. Total population supplied, about 7,900.

Source: 9 wells: 3 dug wells (1, 2, 3) 80, 235, and 80 ft deep near Pinal Creek 2 miles southeast of Globe, reported to yield 300, 500, and 300 gpm; 6 drilled wells, most of which are south of town, 500 to 695 ft deep, reported to yield 250, 150, 169, 80, 280, and 70 gpm. Emergency supply, Old Dominion mine (abandoned) controlled by Miami Copper Co., Miami, Arizona.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 750,000 gal.

The dissolved solids in the water from the other wells ranges from about 275 to near 500 ppm.

GLOBE--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Pine Pine Well 1 Street Well 1 Street Well Well Silica (SiO₂) Hardness as CaCO₃: 28 --Iron (Fe) 00 Total 182 166 Manganese (Mn) Noncarbonate..... 16 0 Calcium (Ca) 45 45 Magnesium (Mg)..... 13 Color 17 1 Sodium (Na) pH 7.9 30 41 Potassium (K) Specific conductance Carbonate (CO.) 0 (micromhos at O Bicarbonate (HCO.) 25 C.)..... 183 259 423 510 Sulfate (SO₄) Turbidity 46 23 ___ Chloride (Cl) 19 Temperature (F.)... 20 71 Fluoride (F) Date of collection... . 3 Apr. 12, Sept. 11, Nitrate (NO.) 5.8 9.2 1946 1951 Dissolved solids..... 304 Depth (feet) 80 530 Diameter (inches)..... 96-144 8 Date drilled Percent of supply 25 15

MESA (Population, 16,790)

Ownership: Municipal; serves also suburban areas. Total population supplied, about 18,000.

Source: 4 wells (4 to 7) 450, 500, 500, and 700 ft deep. The yield of the wells is reported to be 1,800, 1,800, 1,900, and 2,100 gpm, respectively. Well 4 is used for emergency service only.

Treatment: Chlorination. Storage: 300,000 gal.

Water from three continuously used wells is similar in composition to that from well 5. Water from emergency service well is reported to be considerably higher in dissolved solids.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(5355-5)		P	on, o, o. o. decregati		
	Well 5	Well 7		Well 5	Well 7
Silica (SiO ₂) Iron (Fe) Manganese (Mn)			Hardness as CaCO ₃ : Total Noncarbonate	235 84	
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	58 22 146 4.0		ColorpHSpecific conductance	0 7. 7	 7. 7
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄)	0 184 39		(micromhos at 25 C.)	1,180	1, 170 65
Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 0	257 	Temperature (F.) Date of collection	65 Sept. 19, 1951	Sept. 19, 1951

MESA--Continued

	Well 5	Well 7
Depth (feet)	500	700
Diameter (inches)	20	20
Date drilled		1951
Percent of supply	30	

MORENCI (Population, 6,541)

Ownership: The Morenci Water and Electric Company, Morenci.

Source: 2 dug shafts (interconnected) 460 ft deep and 1 drilled well 750 ft deep, all in Eagle Creek canyon 4 miles east of Morenci. The water as pumped from the

wells is hot.

Treatment: Chlorination.

Storage: Reservoir, 4,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Storage Reservoir Tap	, by 0. 5. Geological Surve	Storage Reservoir Tap
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca)	40 .01	Hardness as CaCO ₃ : Total Noncarbonate	140 0
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO _s)	36 12 80	Color	3 8. 0
Bicarbonate (HCO _s) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO _s)	258 25 48 3.2	25 C.) Turbidity Temperature (F.) Date of collection	604 90 Sept. 12, 1951
Dissolved solids	379		1301

NOGALES (Population, 6, 153)

Ownership: Municipal; supplies also a small area in Mexico. Estimated total population supplied, 6,500. System can serve as emergency supply for Nogales, Mexico (Population, 30,000).

Source: Wells and infiltration gallery along Santa Cruz River 6 mi. east of Nogales.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: --

Raw-water storage: None.

Finished-water storage: 1,000,000 gal.

Analysis represents composite of water from all sources as furnished to consumers.

ARIZONA

55

NOGALES--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	26	Hardness as CaCO ₃ :	
Iron (Fe)	.01	Total	214
Manganese (Mn)		Noncarbonate	0
Calcium (Ca)	68		
Magnesium (Mg)	11	Color	3
Sodium (Na)	34	рН	7.8
Potassium (K)	} 34	Specific conductance	
Carbonate (CO ₃)	0.	(micromhos at	
Bicarbonate (HCO ₃)	278.	25 C.)	530
Sulfate (SO ₄)	38	Turbidity	
Chloride (Cl)	10	Temperature (F.)	64
Fluoride (F)	.4	Date of collection	Sept. 13,
Nitrate (NO ₃)	6.0		1951
Dissolved solids	333		

PHOENIX (Population, 106,818)

Ownership: Municipal; serves also a large suburban area. Total population served, about 156,000.

Suburban Pump and Water Co., Phoenix, Ariz.; serves the suburban communities of Sunnyslope and South Phoenix and other areas outside the corporate limits. Estimated population served, 32,000.

North Central Avenue Water Utilities Co., Phoenix, Ariz.; serves suburban area northof Phoenix. Estimated population served, 10,000.

Mariposa Water Utilities Co., Phoenix, Ariz.; serves suburban areas north and northwest of the city. Estimated population served, 10,000.

Total population served, all supplies, 208,000.

Source: Municipal; Verde River (Bartlett Reservoir) about 50 miles northeast of Phoenix; 14 wells, all less than 100 ft deep and reported to yield a total of 3,000,000 gpd, and one infiltration gallery along the Verde River near Fort McDowell, 33 miles northeast of Phoenix, comprising the Verde system; 8 wells near Scottsdale, 11 miles east of Phoenix, each 500 ft deep and reported to yield a capacity total of 20,000,000 gpd. Emergency supply, 12 wells, in downtown Phoenix, all about 300 ft deep and reported to yield 18,000,000 gpd.

Suburban Pump and Water Co. 18 wells, 169 to 600 ft deep with a reported average yield of 430 gpm.

North Central Avenue Water Utilities Co. 5 wells (1 to 5),300 to 506 ft deep, with a reported average yield of 880 gpm.

Mariposa Water Utilities Co., Phoenix, Ariz. 10 wells (includes 1 standby and 1 under construction, 1951), 200 to 600 ft deep with a reported average yield of 400 gpm.

Treatment: Municipal, Verde River; lime, coagulation with alum and ferric sulfate, activated carbon, sedimentation, rapid sand filtration, carbon dioxide, and chlorination. Ground water, chlorination only.

Suburban Pump and Water Co. supply, chlorination.

North Central Avenue Water Utilities Co., supply, none,

Mariposa Water Utilities Co. supply, none.

Rated capacity of treatment plant: Municipal, Verde River, 30,000,000 gpd.
Raw-water storage: The city's right to withdraw water from Bartlett Reservoir is by agreement with the Salt River Valley Users Association and amounts available depend on storage in that and other reservoirs, and other factors.

PHOENIX -- Continued

Finished-water, or water as supplied to consumers, storage: Municipal, reservoirs, 55,000,000 gal.

Suburban Pump and Water Co., two reservoirs, 325,000 and 525,000 gal.

North Central Avenue Water Utilities Co., reservoir, 300,000 gal.

Mariposa Water Utilities Co. 300,000 gal (30,000 gal pressure tank on each well).

About 90 percent of the municipal supplies used in 1950 came from Verde well fields and Bartlett Reservoir. The water treatment plant is located near Fort McDowell.

Analyses: A, represents combined flow of water from surface water treatment plant and Verde well field (infiltration gallery included). B, represents composite of Verde system water and water from Scottsdale wells as supplied to city at time of sampling. The Scottsdale wells furnish water of higher dissolved solids content and hardness than the Verde system. The dissolved solids for the Scottsdale wells is reported to range from 746 to 1,560 ppm, and the hardness, from 396 to 564 ppm. The dissolved solids for downtown Phoenix wells is reported to range from 985 to 2,020 ppm, and the hardness from 350 to 711 ppm. C, represents water from a well at 16th Ave. and Purdue Ave. (Sunnyslope) of the Suburban Pump and Water Co. supply. Partial analyses of samples from six other wells of this supply showed a range in dissolved solids from about 300 to 1,200 ppm. D, represents water from reservoir pumped into by all the wells of the supply of the North Central Avenue Water Utilities Co. E, represents water from Camelback No. 1 well, 7th Ave. and Camelback Road, of the supply of the Mariposa Water Utilities Co. Most of the other wells in this system yield water considerably higher in dissolved solids than the one sampled.

ANALYSES
(Analyses, in parts per million, by U. S. Geological Survey)

(Milaryses, III p	arts per m	minon, by c	. b. Georg	Sicar par ve	<u>y)</u>
	A	В	C	D	E
Silica (SiO ₂)	17	24	27	27	25
Iron (Fe)	. 01	. 01	.01	. 03	. 01
Manganese (Mn)					
Calcium (Ca)	40	52	82	77	45
Magnesium (Mg)	22	28	36	56	41
Sodium (Na)	28	71	55	147	48
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	187	223	165	270	154
Sulfate (SO ₄)	64	88	82	123	43
Chloride (Cl)	20	84	166	222	112
Fluoride (F)	.4	. 6	.1	. 6	.2
Nitrate (NO _s)	2.3	6. 9	20	98	69
Dissolved solids	290	473	567	887	475
Hardness as CaCO ₂ :	1		· ·		
Total	190	244	3 5 2	422	281
Noncarbonate	38	62	218	202	155
Color	5	4	4	3	. 2
рН	7.7	7.8	7.8	7.9	7.9
Specific conductance]		}	J	
(micromhos at 25 C.)	473	790	985	1,490	813
Turbidity					
Temperature (F.)	65	68	72	76	78
Date of collection	Sept. 18,		Sept. 18,		Sept. 18,
	1951	1951	1951	1951	1951

PHOENIX == Continued

	С	D	E
Depth (feet) Diameter (inches) Date drilled Percent of supply	376 12 		580 10
Percent of Supply			

PRESCOTT (Population, 6, 764)

Ownership: Municipal; supplies also suburban areas.. Total population supplied, about 14,000.

Source: Surface system (25 percent of supply in 1950) includes one reservoir on Hassayampa River about 5 miles south of Prescott, and two reservoirs on Bannion Creek about 2 miles south of Prescott. Ground water system (75 percent of supply in 1950) includes infiltration gallery on Granite Creek just north of Prescott, and two wells in Chino Valley 15 miles north of Prescott. The wells are 700 and 550 ft deep, and reported to yield 1,100 and 1,850 gpm, respectively. More than 25 percent of the supply is normally obtained from the surface system.

Treatment: (Surface system only) Prechlorination, coagulation with ferric chloride, activated carbon, sedimentation, slow sand filtration, postchlorination, and ammoniation. Well supply, chlorination only.

Rated capacity of treatment plant: 1,700,000 gpd.

Raw-water storage: Total 290,000,000 gal. Hassayampa Reservoir, 21,500,000 gal; Upper Bannion Creek Reservoir, 200,000,000 gal; Lower Bannion Creek Reservoir (Goldwater Lake), 67,000,000 gal.

Finished-water storage: 4,500,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(maryoco, in parts per minion, by 0. b. deological barvey)						
	Surface supply a	Well 1		Surface supply a	Well 1	
Silica (SiO ₂)	17	72	Hardness as CaCO ₃ :			
Iron (Fe)	.05	. 05	Total	136	104	
Manganese (Mn)			Noncarbonate	62	0	
Calcium (Ca)	33	25		 		
Magnesium (Mg)	13	10	Color	0	0	
Sodium (Na)		17	рН	7.3	8.0	
Potassium (K)	7.4	4.2	Specific conductance		1	
Carbonate (CO ₂)	.0	0	(micromhos at			
Bicarbonate (HCO.)	90	151	25 C.)	330	260	
Sulfate (SO ₄)	69	6.6	Turbidity			
Chloride (Cl)	13	7.0	Temperature (F.)			
Fluoride (F)	.2	.4	Date of collection	Sept. 20,	Sept. 20,	
Nitrate (NO ₃)	3.4	3.0		1951	1951	
Dissolved solids	207	219)		
Depth (feet)					700	
Depth (feet)						
Diameter (inches)					16	
Percent of supply		• • • • • • • • • • • • • • • • • • • •	•••••••	••••••		
z dz dditt dr deppij,	• • • • • • • • • • • • • • • • • • • •	**********	••••			

a Finished water.

TEMPE

(Population, 7,684)

Ownership: Municipal; serves also suburban areas. Total population served, about 10,000.

Source: 3 wells, one at Apache Blvd. and Hudson Manor (depth 420 ft), one at College Ave. and S.P. R.R. tracks (depth 513 ft), and one (standby) at College Ave. and 7th Street (depth 238 ft). The yield of the wells is reported to be 2,400, 1,700, and 1,700 gpm, respectively.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: One reservoir, 1,000,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

()		F	on, b, o. b. deoregree		
	Well a	Wellb		Well a	Wellb
Silica (SiO ₂) Iron (Fe)	28 . 14	27	Hardness as CaCO ₃ : Total	264	389
Manganese (Mn)			Noncarbonate	142	20
Calcium (Ca)	60	95			
Magnesium (Mg)		37	Color	0	0
Sodium (Na)		259	p H	7.7	7.4
Potassium (K) ,		5.2	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	150	450	25 C.)	1,110	1, 910
Sulfate (SO ₄)	52	103	Turbidity		
Chloride (Cl)		338	Temperature (F.)	71	65
Fluoride (F)		.2	Date of collection	Sept. 19,	
Nitrate (NO ₃)		14		1951	1951
Dissolved solids	661	1,100			
Depth (feet)					513
Diameter (inches)					20
Date drilled					
		1950 ±50	±50		

a Apache Blvd. and Hudson Manor.

TUCSON (Population, 45, 454)

Ownership: Municipal; serves also parts of the suburban communities of Amphitheater and Wakefield and other suburban areas. Total population served, about 75,000.

Suburban area (east and northeast of corporate limits of the city) served by Vista Water Co., Eastside Water Co., Polar Water Co., and Lansdale Water Co., all owned by one local group. Each company has separate wells and distribution system for the area it serves. Total population served, about 19,500.

Source: Municipal; 20 wells, 200 to 510 ft deep in North Side well field; 16 wells, 118 to 476 ft deep in South Side well field. Only three wells in the North Side well field are under 300 ft in depth, and only five in the South Side well field are under 200 ft.

Suburban area; Vista Water Co. 2 wells, each 200 ft deep; Eastside Water Co. 7 wells, 210 to 339 ft deep; Polar Water Co. 8 wells, 200 to 318 ft deep; Lansdale Water Co. 3 wells (depths not reported).

Treatment: Municipal supply, chlorination; private water-companies supply, none.

Storage: Municipal, 5 reservoirs and 4 elevated tanks, 14,200,000 gal; private companies, elevated tanks, 100,000 gal.

b College Ave. and R. R. tracks.

TUCSON--Continued

North Side plant serves area east of Park or Tyndall Avenues. South Side plant serves area west of Park or Tyndall Avenues.

The analyses show reasonably well the composition of the water served by the two well fields and the private companies in the respective areas of the city proper and the suburban area designated.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(Analyses, in parts per million, by U. S. Geological Survey)						
		South Side		East Side		
	North Side	reservoir at	Polar Water	Water Co.		
	plant 3	Osborn & 18th	Co. well 1	well 2		
Silica (SiO ₂)	32	34	27	28		
Iron (Fe)		.00	.00	.00		
Manganese (Mn)						
Calcium (Ca)	40	65	34	29		
Magnesium (Mg)	6.5	14	6.0	5 . 2		
Sodium (Na)	33	78	26	20		
Potassium (K)		10	20	20		
Carbonate (CO ₃)		0	0	0		
Bicarbonate (HCO ₃)		253	157	139		
Sulfate (SO_4)		129	17	9.4		
Chloride (Cl)	11	31	8.5	6.5		
Fluoride (F)		. 9	. 3	. 3		
Nitrate (NO ₃)	6.9	2.7	10	5.5		
Dissolved solids	255	484	210	177		
Hardness as CaCO ₃ :	1					
Total	126	220	110	94		
Noncarbonate	0	12	0	0		
Color			•	1		
pH		- 1	1	8. 1		
Specific conductance	8.0	8.0	8. 1	0.1		
(micromhos at 25 C.)	382	736	320	264		
Turbidity						
Temperature (F.)	80	76	80	84		
Date of collection	Sept. 14,	Sept. 14,	Sept. 14,	Sept. 14,		
	1951	1951	1951	1951		
Depth (feet)			200	280		
Diameter (inches)	200	12				
Date drilled	1937	1932				
Percent of supply	· · · · · · · · · · · · · · · · · · ·		1937	1932		
	L	L				

WAKEFIELD (Population, 8,906)

Ownership: (See Tucson.)

WINSLOW (Population, 6,518)

Ownership: Atchison, Topeka, and Santa Fe Railway Co.; supplies also suburban area outside the city limits. Total population supplied, about 9,000.

Source: Clear Creek (flow diverted into reservoir).

Treatment: Coagulation with alum and soda ash, activated carbon, sedimentation, filtration, addition of polyphosphate (Calgon), chlorination, and ammoniation., Rated capacity of treatment plant: 1,350,000 gpd.

Raw-water storage: --

Finished-water storage: 7,000,000 gal.

The flow of Clear Creek is diverted into the reservoir 7 miles southeast of Winslow. The treatment plant is near the reservoir.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)		6.3	Hardness as CaCO ₃ :		
Iron (Fe)		.03	Total	231	221
Manganese (Mn)			Noncarbonate	55	38
Calcium (Ca)		44			
Magnesium (Mg)	27	27	Color	5	5
Sodium (Na)	329	343	pH	8. 1	8.4
Potassium (K)	4.0	3.2	Specific conductance		
Carbonate (CO ₃)	0	7	(micromhos at		
Bicarbonate (HCO ₃)	215	210	25 C.)	2,090	2,110
Sulfate (SO ₄)	40	42	Turbidity		
Chloride (Cl)	525	525	Temperature (F.)		
Fluoride (F)	. 2	.1	Date of collection	Aug. 1,	Aug. 1,
Nitrate (NO ₂)		2.0		1951	1951
Dissolved solids	1,120	1,110			

ARIZONA 61

YUMA (Population, 9, 145)

Ownership: Arizona Edison Co.; serves also West Yuma and other suburban areas. Total population served, about 20,000.

Source: Colorado River (direct diversion). Standby diversion facilities on Yuma Main Canal.

Treatment: Coagulation with alum, copper sulfate added to control algae in settling basins when needed, sand filtration (4 rapid and 3 slow sand filters), and chlorination.

Rated capacity of treatment plant: 8,000,000 gpd.

Raw-water storage: --

Finished-water storage: 1,000,000 gal.

Flow in Colorado River at Yuma is regulated by large reservoirs, and the chemical quality of the water is nearly constant for long periods. Analysis represents weighted-average concentration of dissolved matter in the river water as determined by daily sampling of the Yur. 1 Main Canal for the period Oct. 1, 1949 to Sept. 30, 1950.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Colorado River (raw water)	Raw water (at plant)	Finished water
Silica (SiO ₂)	13		
Iron (Fe)	. 05		
Manganese (Mn)			
Calcium (Ca) ······	84		
Magnesium (Mg)	27		
Sodium (Na)	88		
Potassium (K)	2. 9		
Carbonate (CO ₃)	0		
Bicarbonate (HCO ₃)	163	161	155
Sulfate (SO ₄)	265		
Chloride (Cl)	75	92	93
Fluoride (F)	. 3		
Nitrate (NO ₃)	1.4		
Dissolved solids	637		
Hardness as CaCO ₃ :			
Total	320		
Noncarbonate	187		
Color			l
pH			
Specific conductance			
(micromhos at 25 C.)	9 85	1,070	1,070
Turbidity			
Temperature (F.)			
Date of collection	1949-50	Sept. 17, 1951	Sept. 17, 1951

ARKADELPHIA, ARKANSAS (Population, 6,819)

Ownership: Arkadelphia Water Co. (General Water Works Corp.).

Source: Ouachita River.

Treatment: Coagulation with lime and alum, sedimentation, rapid sand filtration,

and chlorination.

Rated capacity of treatment plant: 700,000 gpd.

Raw-water storage: None.

Finished-water storage: 440,000 gal.

The treatment plant is located on the bank of Ouachita River about 300 yd east of Ouachita College athletic field.

Analyses of samples collected daily from the Ouachita River at Arkadelphia show there is some variation in the chemical character of the water throughout the year, but the dissolved solids is usually low.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water a	Finished water		Raw water a	Finished water
Silica (SiO ₂)	6.4	4.8 .05	Hardness as CaCO ₃ :	29	59
Iron (Fe) Manganese (Mn)	. 12	.03	Noncarbonate	6	27
Calcium (Ca) Magnesium (Mg)	8. 1 2. 1	19 2, 8	Color		6
Sodium (Na)	4.2	3.0	рН		8.6
Potassium (K) Carbonate (CO ₃)		1.1	Specific conductance (micromhos at		
Bicarbonate (HCO ₃)	2 8	b39	25 C.)	76.7	126
Sulfate (SO ₄) Chloride (Cl)	7.4 4.1	26 3.8	TurbidityTemperature (F.)		60 60
Fluoride (F)		.1	Date of collection		Dec. 4,
Nitrate (NO ₃) Dissolved solids		1.1 84			1951

^aAverage of analyses of 10-day composites of daily samples collected at Arkadelphia for the year October 1950 to September 1951.

BATESVILLE (Population, 6,414)

Ownership: General Water Works Corporation, Pine Bluff, Ark.

Source: White River.

Treatment: Aeration, coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: --

Finished-water storage: 550,000 gal.

The treatment plant is on South Central Avenue near the river.

There is considerable variation in the chemical composition of the water throughout the year. The analyses represent water of about maximum content of dissolved solids and maximum hardness.

bIncludes the equivalent of less than 5 ppm of carbonate (CO₃).

ARKANSAS 63

BATESVILLE--Continued
ANALYSES
(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	7.6	5.6	Hardness as CaCO ₃ :		
Iron (Fe)	.68	. 23	Total	139	159
Manganese (Mn)	.00	.00	Noncarbonate	5	38
Calcium (Ca)	36	44			
Magnesium (Mg)	12	12	Color	7	4
Sodium (Na)	1.9	2.1	pH	7.8	7.4
Potassium (K)	1.4	1.2	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	164	148	25 C.)	257	268
Sulfate (SO ₄)	5.0	26	Turbidity	2	1
Chloride (Cl)	2.8	6.0	Temperature (F.)	39	40
Fluoride (F)		.1	Date of collection	Nov. 21,	Nov. 21,
Nitrate (NO ₃)		2.7		1951	1951
Dissolved solids	151	188		1	

BENTON

(Population, 6, 277)

Ownership: Municipal. Source: Saline River.

Treatment: Coagulation with lime and alum, sedimentation, rapid sand filtration,

chlorination, and ammoniation.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,350,000 gal.

The treatment plant is at 417 Hazel Street.

Analyses of samples collected daily from the Saline River at Benton show there is some variation in the chemical character of the water throughout the year, but the dissolved solids is usually low.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(2.11.2,7.202,	Raw	Finished water (city tap)	i .	Raw water a	Finished water (city tap)
Silica (SiO ₂)	 	4.6 .12 .00	Hardness as CaCO ₃ : Total Noncarbonate	57 6	61 21
Calcium (Ca)	4. 1 2. 4	18 4.0 2.0 .7	Color pH Specific conductance (micromhos at	 	10 7. 2
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)		0 49 18 3.8	25 C.) Turbidity Temperature (F.)	119 	128 2 48
Fluoride (F) Nitrate (NO ₃) Dissolved solids	1.5	. 2 . 4 79	Date of collection		Dec. 4, 1951

^a Average of analyses of 10-day composites of daily samples collected from the river at Highway bridge, 2 miles west of Benton for the year Oct. 1950-Sept. 1951.

BLYTHEVILLE (Population, 16, 234)

Ownership: Blytheville Water Co.

Source: 3 wells (3 to 5), each 1,500 ft deep and reported to yield 1,200, 1,800,

and 1,800 gpm, respectively.

Treatment: Aeration (spray and contact beds), sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 2,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 850,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	m parto	PCT MILLER	on, by or or decreasing		
	Well 4	Finished water ^a		Well 4	Finished water ^a
Silica (SiO ₂)	10	9.9	Hardness as CaCO ₃ :		
Iron (Fe)	2.6	. 06	Total	27	27
Manganese (Mn)			Noncarbonate	0	0
Calcium (Ca)	7. 7	7.3			
Magnesium (Mg)	1.9	2.2	Color		
Sodium (Na)	29	30	рН	6.6	7.6
Potassium (K)		5.1	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	98	101	25 C.)	189	195
Sulfate (SO ₄)	11	10	Turbidity		
Chloride (Cl)		3.0	Temperature (F.)	77	75
Fluoride (F)	. 0	.0	Date of collection	May 22,	Apr. 24,
Nitrate (NO ₃)	. 8	. 8		1950	1946
Dissolved solids	118	118			
Depth (feet)					
Diameter (inches)					
Date drilled					1
Percent of supply				1938	
Tarana ar pabbal		· · · · · · · · · · · · · · · · · · ·		1	1

^aComposite.

CAMDEN (Population, 11, 372)

Ownership: Municipal. Source: Quachita River.

Treatment: Aeration, coagulation with lime and alum, sedimentation, rapid sand

filtration, and chlorination.

Rated capacity of treatment plant: 1,750,000 gpd.

Raw-water storage: --

Finished-water storage: 1, 100, 000 gal.

The treatment plant is located at end of East Washington St. The treatment plant capacity will be increased by 1,500,000 gpd within 9 months. Analyses of daily samples collected from the Quachita River at Camden show some variation in chemical character, but the dissolved solids is usually low.

ARKANSAS

65

CAMDEN--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Raw Finished Raw Finished water a water ^a waterb water b Silica (SiO₂) Hardness as CaCO.: 9.8 4.5 Iron (Fe) 26 53 Total 43 . 11 Manganese (Mn) Noncarbonate..... 5 28 .00 Calcium (Ca) 7.3 17 7 Magnesium (Mg)..... 1.8 2.6 Color 7.3 7.5 Sodium (Na) 11 8.6 pH Potassium (K) Specific conductance 1.3 2.0 Carbonate (CO₃) (micromhos at 0 0 114 148 Bicarbonate (HCO.) 26 30 25 C.)..... Turbidity 2 Sulfate (SO₄) 6, 1 23 ___ 62 Chloride (C1) 17 15 Temperature (F.)... 1946-47 Fluoride (F) 2 Date of collection... . 1 Dec. 4, . 4 1951 Nitrate (NO.) 1.7 Dissolved solids.... 81 92

CONWAY (Population, 8,610)

Ownership: Municipal. Source: Cadron Creek.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration,

and chlorination.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: --

Finished-water storage: 1, 150, 000 gal.

The treatment plant is located about 6 miles northwest of Conway. There is some variation in the chemical character of the water throughout the year, but the dissolved solids at all times is low.

ANALYSES
(Analyses, in parts per million, by U. S. Geological Survey)

	P	P	on, by c. b. decregion	<u> </u>	
	Raw water	Finished water ^a		Raw water	Finished water ^a
Silica (SiO ₂)	. 25 . 00	6.5 .31 .00	Hardness as CaCO ₃ : Total Noncarbonate	14 3	20 12
Calcium (Ca)	1.6 2.0 1.3	6. 2 1. 2 2. 2 1. 8	Color pH Specific conductance	27 6. 6	5 6. 9
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	13 2.6	0 10 11 4.8	(micromhos at 25 C.)	32.8 4 47	57. 0 1 53
Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 1 2. 7	.1 1.0 40	Date of collection	Nov. 21, 1951	Nov. 21, 1951

a City tap.

 ^aAverage of analyses of 10-day composites of daily samples collected at Camden for the year October 1946 to September 1947.
 ^b City tap.

EL DORADO (Population, 23,076)

Ownership: El Dorado Water Co.

Source: 6 wells (2, 6 to 10), 160, 720, 725, 700, 718, and 737 ft deep. The yield of the wells is reported to be 570, (well 6, not reported), 630, 1,050, 300, and 1,000 gpm. Wells 6 and 9 are for auxiliary or emergency supply.

Treatment: None.

Storage: 1,500,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(maryses, in parts per	i mimion, by o.	5. Georgeour be	12 (0)
	Well 2	Well 10	Wells (city tap) ^a
Silica (SiO ₂)	40	10	18
Iron (Fe)	3. 1	.02	. 02
Manganese (Mn)			
Calcium (Ca) ·····	7.4	2. 2	4.0
Magnesium (Mg)	3.8	.6	1. 7
Sodium (Na)		106	102
Potassium (K)		1, 5)
Carbonate (CO ₃)	0	9	4
Bicarbonate (HCO ₃)	17	213	224
Sulfate (SO ₄)		.8	.8
Chloride (Cl)		36	33
Fluoride (F)		.1	. 2
Nitrate (NO ₃)	.1	. 1	1.5
Dissolved solids	114	275	286
Hardness as CaCO ₃ :			1
Total		8	17
Noncarbonate	20	0	0
Color			
pH		8.1	
Specific conductance	0.0	0.1	
(micromhos at 25 C.)	133	454	
Turbidity			
Temperature (F.)	65	74	
Date of collection	Nov. 28, 1945	Nov. 28, 1945	Feb. 15, 1950
Depth (feet)		737 15-10	
Diameter (inches)		1945	
Date drilled	l .	1940	
Percent of supply			

^aAnalyzed by U. S. Public Health Service, Bethesda Md.

FAYETTEVILLE (Population, 17,091)

Ownership: Municipal; supplies also the communities of Combs, Farmington, Greenland, and Johnson. Total population supplied, about 20, 100.

Source: West Fork White River (impounded), two-thirds of supply; Clear Creek (impounded), one-third of supply. Auxiliary or emergency supply, Wilson Lake.

Treatment: West Fork White River: coagulation with lime and iron salts, sedimentation, slow anthrafilt filtration, and chlorination. Clear Creek: coagulation with lime and alum, sedimentation, slow anthrafilt filtration, and chlorination.

FAYETTEVILLE--Continued

Rated capacity of treatment plants: West Fork White River plant, 2,000,000 gpd; Clear Creek plant, 1,000,000 gpd.

Raw-water storage: Not known.

Finished-water storage: West Fork White River reservoir, 3,750,000 gal; Clear Creek reservoir, 1,000,000 gal.

West Fork White River treatment plant is located on Mount Sequoyah in Fayetteville. Clear Creek treatment plant is 4 miles north of Fayetteville on Johnson Road. The plants supply different sections of the city and the only mixing of the finished water from the two sources is that which might occur in the distribution mains.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

		, .,	3/
	Finished water (city tap) ^a		Finished water (city tap) ^a
Silica (SiO ₂)	5.2	Hardness as CaCO ₃ :	
Iron (Fe)	. 29	Total	71
Manganese (Mn)	. 00	Noncarbonate	15
Calcium (Ca)	26		
Magnesium (Mg)	1.5	Color	5
Sodium (Na)	3.1	pH	7.3
Potassium (K)	1.5	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	68	25 C.)	153
Sulfate (SO_4)	12	Turbidity	1
Chloride (Cl)	4.8	Temperature (F.)	60
Fluoride (F)	. 1	Date of collection	Dec. 3, 1951
Nitrate (NO ₃)	4.0		
Dissolved solids	93		

^a At U.S.G.S. laboratory, Bureau of Research, University of Arkansas.

FORREST CITY (Population, 7,607)

Ownership: Municipal.

Source: 3 wells (1 to 3), 530, 502, and 530 ft deep, and reported to yield 450, 350,

and 750 gpm, respectively.

Treatment: Aeration, softening with lime, coagulation with lime and alum, sedimentation (upward flow cylindrical tanks), recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,250,000 gal.

FORREST CITY--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1	Well 2	Finished water (city tap)
Silica (SiO ₂)	24	27	22
Iron (Fe)	1.7	1. 2	.32
Manganese (Mn)			.00
Calcium (Ca)	58	53	11
Magnesium (Mg)	23	21	17
Sodium (Na)	6.7	11	12
Potassium (K)	4.1	4.1	1.4
Carbonate (CO ₃)	0	0	7
Bicarbonate (HCO ₃)	297	287	106
Sulfate (SO ₄)	5.3	3.3	17
Chloride (Cl)	6.0	7.0	5.0
Fluoride (F)		.0	. 3
Nitrate (NO ₃)	. 5	. 2	.3
Dissolved solids	274	268	148
Hardness as CaCO ₃ :			
Total	239	219	97
Noncarbonate	0	0	0
Color			7
pH	7. 0	7.0	8.7
Specific conductance			-,,
(micromhos at 25 C.)	407	359	219
Turbidity			2
Temperature (F.)	64	64	52
Date of collection	June 26, 1946	June 26, 1946	Dec. 26, 1951
Depth (feet)	530	502	
Diameter (inches)	8	8	
Date drilled	1937	1935	
Percent of supply		1000	
Percent or suppry			

FORT SMITH (Population, 47, 942)

Ownership: Municipal; supplies also Alma, Camp Chaffee, Mountainburg, Van Buren, and other communities. Total population supplied, about 72, 300. Source: Clear Creek impounded in Lake Fort Smith, approximately 22 miles northeast of the city.

Treatment: Coagulation with iron salts and lime, sedimentation, rapid sand filtration, chlorination, and ammoniation.

Rated capacity of treatment plant: 9,000,000 gpd.

Raw-water storage: Lake Fort Smith, 3, 900, 000, 000 gal.

Finished-water storage: 23,000,000 gal.

The treatment plant is 1 mile north of Mountainburg.

FORT SMITH--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water a	Finished water ^b		Raw water ^a	Finished water b
Silica (SiO ₂)	7.6	6.6	Hardness as CaCO ₃ :		
Iron (Fe)	.02	. 20	Total	14	29
Manganese (Mn)		.00	Noncarbonate	0	11
Calcium (Ca)	3.6	9.1			-
Magnesium (Mg)		1.6	Color	10	20
Sodium (Na)	2.1	1.6	pH	6.8	7.7
Potassium (K)		.4	Specific conductance		l
Carbonate (CO ₃)		0	(micromhos at		
Bicarbonate (HCO ₃)	18	22	25 C.)	41.0	71. 2
Sulfate (SO ₄)		12	Turbidity		3
Chloride (Cl)		2.5	Temperature (F.)		41
Fluoride (F)		.1	Date of collection	July 27,	Dec. 27,
Nitrate (NO ₃)		.8		1949	1951
Dissolved solids	31	59			

Regular determinations at treatment plant, 1950

	a	kalini s CaC (ppm)	O ₃	рН		Hardness as CaCO ₃ (ppm)		Turbidity				
	Av	Max	Min	Αv	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water Finished water		20 34	9 13	6. 7 8. 9	7. 1 9. 4	6.3 8.4	23 48	29 60	15 2 8	22 0	152 0	3 0

^aCollected at spillway, Lake Fort Smith.

bCity tap.

HELENA (Population, 11, 236)

Ownership: Municipal; also supplies suburban area. Total population supplied, 12,000.

Source: 3 wells (NW, NE, and SE), 493, 612, and 495 ft deep, and reported to yield 750, 750, and 1,000 gpm.

Treatment: Chlorination, and Calgon and soda ash for corrosion control.

Rated capacity of treatment plant: 3,460,000 gpd.

Raw-water storage: --

Finished-water storage: 1,550,000 gal.

HELENA--Continued

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(IIIIIII)	m parts	ber minn	on, by o. b. deorogica	- Du- 1037	
	NW well	Finished		NW well	Finished
	(raw	water		(raw	water
	water)	(city tap)		water)	(city tap)
Silica (SiO ₂)	20	29	Hardness as CaCO ₃ :		
Iron (Fe)	. 57	.33	Total	46	42
Manganese (Mn)		.00	Noncarbonate	0	0
Calcium (Ca)		10			
Magnesium (Mg)	3.9	4.0	Color		20
Sodium (Na)	169	166	pH	7.4	8.0
Potassium (K)	7.6	3.5	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO_3)	394	358	25 C.)	999	749
Sulfate (SO ₄)	. 8	3.5	Turbidity		1
Chloride (Cl)	69	74	Temperature (F.)	66	56
Fluoride (F)	. 8	.7	Date of collection	June 27,	Dec. 26,
Nitrate (NO ₃)		8.		1946	1951
Dissolved solids		472			

HOPE (Population, 8,605)

Ownership: Municipal,

Source: 5 wells (1 to 5), 1,480, 620, 620, 620, and 1,500 ft deep. The yield of the wells is reported to be 292, 147, 156, 340, and 250 gpm.

Treatment: Chlorination (average residual 0.15 ppm). Rated capacity of treatment plant: 1,800,000 gpd.

Raw-water storage: None.

Finished-water storage: 786,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Illiary Boo), In p	arts per m	2111011, 25	. D. Georg	Brown But to	3/
	Well 1	Well 2	Well 3	Well 4	Well 5
Silica (SiO ₂)	8.0	17	17	19	9, 9
Iron (Fe)	. 16	. 18	. 11		. 07
Manganese (Mn)					
Calcium (Ca)	3.4	21	16	21	.8
Magnesium (Mg)	1.2	3, 4	2. 9	4.0	1. 9
Sodium (Na)	419	115	124	107	444
Potassium (K)	3.8	3.0	2.9	3.2	16
Carbonate (CO ₃)	28	0	0	0	10
Bicarbonate (HCO ₃)	517	267	260	264	549
Sulfate (SO ₄)	44	46	5 2	43	44
Chloride (Cl)	292	36	41	31	320
Fluoride (F)	.3	.6	. 4	.0	2. 2
Nitrate (NO ₃)	. 2	.0	. 0	.0	3.6
Dissolved solids	1,060	376	386	361	1, 120
Hardness as CaCO ₃ :					
Total	14	66	5 2	69	10
Noncarbonate	0	0	0	0	0
Color					7
pH	8.2	8.3	8. 1	8.1	8.4
Specific conductance	1				
(micromhos at 25 C.)	1,880	622	635	593	1, 920
Turbidity					
Temperature (F.)	100	78	78	78	98
Date of collection	Oct. 26,	Oct. 26,	Oct. 26,	Oct. 26,	Mar. 27,
	1945	1945	1945	1945	1951

HOPE--Continued

	Well 1	Well 2	Well 3	Well 4	Well 5
Depth (feet) Diameter (inches) Date drilled Percent of supply	1,480 8-6-4 1918	620 8 1933 	620 8 1933 	620 10 1943 	1,500 12-8 1950

HOT SPRINGS (Population, 29,307)

Ownership: Municipal.

Source: 4 artificial lakes (Hot Springs, Dillion, Bethel, and Sanderson). Treatment: Prechlorination, coagulation with alum and lime, sedimentation,

rapid sand filtration, and postchlorination. Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 4 lakes.

Finished-water storage: 1,200,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

(interference of the part	eb per mittion	i, by b. D. deological balve	
	Finished water (city tap)		Finished water (city tap)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	4.5 .18 .00	Hardness as CaCO ₃ : Total Noncarbonate	33 15
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	11 1.3 1.7 .5	Color pH Specific conductance (micromhos at	7 8.8
Bicarbonate (HCO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Ci) Fluoride (F) Nitrate (NO ₃) Dissolved solids	a ₂₂ 12 4.0 .1 .0	25 C.)	76.5 2 Dec. 3, 1951

a Includes the equivalent of less than 5 ppm of carbonate (CO₃).

JONESBORO (Population, 16,310)

Ownership: Municipal; supplies also Nettleton. Total population supplied, about 17,700.

Source: 5 wells (1, 2, Lamarr St., Culberhouse, and Johnson St.), 132, 150, 215, and 150 ft deep (depth not reported on Johnson St. well). The yield of the wells is reported to be 1,000, 800, 1,200, 1,100, and 900 gpm.

Treatment: Aeration, ammoniation, chlorination, and fluoridation.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: --

Finished-water storage: Elevated tank, 1,500,000 gal; ground reservoir, 1,000,000 gal.

JONESBORO--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1	Well 2	Lamarr well	Finished water (city tap)
Silica (SiO ₂)	26	26	32	27
Iron (Fe)	.0	9 . 15	. 10	.06
Manganese (Mn)	-	-1	·]	
Calcium (Ca)		19	12	19
Magnesium (Mg)	7.0	9.4	4.0	9.4
Sodium (Na)	17	13	11	18
Potassium (K)	1.8	2, 9	1.4	1.6
Carbonate (CO ₂)	0	0	0	
Bicarbonate (HCO ₃)	62	96	64	a ₈₇
Sulfate (SO ₄) ·····		15	3.6	26
Chloride (Cl)	14	13	9.5	18
Fluoride (F)	.0		0.	.1
Nitrate (NO ₃)	2.8	.8	8.6	3.2
Dissolved solids	141	150	122	165
Hardness as CaCO ₃ :	1		}	
Total	59	86	46	86
Noncarbonate	8	7	0	15
Color	_			
pH Specific conductance	6.	7.0	6.7	8.4
(micromhos at 25 C.)	21		ı	263
Turbidity	-		1	
Temperature (F.)	6			ł .
Date of collection	May 3, 195	0 May 3, 1950	May 3, 1950	Apr. 25, 1946
Depth (feet)	13		1	ľ
Diameter (inches)	-	0 10	- 1	1
Date drilled	192	9 1929	9 1930	1
Percent of supply	-			<u> </u>

a Includes the equivalent of less than 5 ppm of carbonate (CO₃).

LITTLE ROCK (Population, 105, 213)

Ownership: Little Rock Municipal Water Works. Supplies also Cammack Village, North Little Rock, Park Hill, and other suburban areas. Total population supplied, about 164, 700.

Source: Alum Fork of Saline River impounded in Lake Winona, 33 miles west of the city. The watershed is uninhabited and lies almost wholly within the Ouachita National Forest. Arkansas River, emergency supply.

Treatment: Coagulation with lime and alum, ammoniation, chlorination, sedimentation, rapid sand filtration, alkali for the adjustment of pH, and fluoridation. Rated capacity of treatment plant: 23,000,000 gpd.

Raw-water storage: Lake Winona, 13,500,000,000 gal; auxiliary reservoir, 92,000,000 gal.

Finished-water storage: 10, 200, 000 gal.

Raw water is delivered to the treatment plant, located in the city, by gravity flow. The elevation of the treatment plant is such that the major portion of the distribution system is also served by gravity.

LITTLE ROCK--Continued **ANALYSES**

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water ^a	Finished water b		Raw water ^a	Finished water b
Silica (SiO ₂)	3.5	4.5	Hardness as CaCO ₃ :		
Iron (Fe)		. 14	Total	11	18
Manganese (Mn)		. 00	Noncarbonate	3	6
Calcium (Ca)	2.4	4.5			
Magnesium (Mg)	1.2	1.7	Color	35	12
Sodium (Na)	1.0	2.1	pH	7.1	7.1
Potassium (K)		.4	Specific conductance		
Carbonate (CO ₂)	0	0 1	(micromhos at		
Bicarbonate (HCO _s)	10	15	25 C.)		46.9
Sulfate (SO ₄)	. 0	4.9	Turbidity	10	1
Chloride (Cl)	2.0	3.0	Temperature (F.)		58
Fluoride (F)	. 0	1.0	Date of collection	Jan. 18,	Dec. 26,
Nitrate (NO ₃)		.1		1951	1951
Dissolved solids	25 .	31			

Regular determinations at treatment plant, 1950

		lkalir s CaC (ppm	CO ₃		рН		Hardne s s as CaCO _s (pp m)		Turbidity			
	Αv	Max	Min	Αv	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	7 14	10 22		6. 5 8. 3		6. 1 7. 0	10 20	18 30	8 12	14 0	40 0	5 0

a Analyzed by Little Rock Water Department.

MAGNOLIA (Population, 6, 918)

Ownership: Municipal.

Source: 4 wells (1 to 4), 435, 428, 410, and 425 ft deep, and reported to yield 320, 380, 468, and 500 gpm.

Treatment: Chlorination.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 811,000 gal.

b City tap.

MAGNOLIA -- Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 3	Well 4	Finished water (city tap)
Silica (SiO ₂)	10	12	11
Iron (Fe)		. 08	. 14
Manganese (Mn)			.00
Calcium (Ca)	8.8	5.6	7.8
Magnesium (Mg)	1.6	.8	1.8
Sodium (Na)	69	86	75
Potassium (K)	4.5	1.9	2. 1
Carbonate (CO ₃)			0
Bicarbonate (HCO ₃)	a ₁₉₂	a ₂₁₈	197
Sulfate (SO ₄)		8.9	16
Chloride (Cl)		6, 0	7. 2
Fluoride (F)		.1	. 2
Nitrate (NO ₃)	. 2	. 2	.8
Dissolved solids	215	230	224
Hardness as CaCO ₃ :			
Total		17	27
Noncarbonate	0	0	0
Color			7
pH	8.5	8.3	7. 9
Specific conductance			
(micromhos at 25 C.)	338	359	34 8
Turbidity			2
Temperature (F.)		71	58
Date of collection	Jan. 17, 1946	Nov. 8, 1950	Dec. 4, 1951
Depth (feet)	413	425	
Diameter (inches)	12	8	
Date drilled	1944	1951	
Percent of supply			

^aIncludes the equivalent of less than 5 ppm of carbonate (CO_3) .

MALVERN (Population, 8,072)

Ownership: Municipal; supplies also a small number of people outside the city limits. Total population supplied, about 8, 120.

Source: Ouachita River.

Treatment: Coagulation with lime and alum, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1, 200, 000 gpd.

Raw-water storage: --

Finished-water storage: 960,000 gal.

The treatment plant is located on Front Street near Missouri Pacific Depot in Malvern. Analyses of composites of daily samples collected from the Ouachita River near Malvern show a variation in chemical character, but the dissolved solids is low.

MALVERN--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water a	Finished water ^b		Raw water ^a	Finished water ^b
Silica (SiO ₂) Iron (Fe)	. 04 . 00		Hardness as CaCO ₃ : Total Noncarbonate	22 1	4 1 18
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂)	1.5 4.6 1.0	13 2. 1 2. 5 . 9	Color	 7. 4	5 7. 4
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	28 4.3 2.6 .3	28 19 3. 2 . 1	25 C.) Turbidity Temperature (F.) Date of collection	64. 9 1946-47	99. 5 2 46 Dec. 4,
Nitrate (NO ₃) Dissolved solids	1, 9	. 6 61			1951

^aAverage of analyses of 10-day composites of daily samples from the Ouachita River near Malvern for the year October 1946 to September 1947.

^bCity tap.

NEWPORT (Population, 6, 254)

Ownership: Municipal.

Source: 3 wells (East 1, West 2, and 3) each 103 ft deep, and reported to yield 550, 500, and 1,600 gpm, respectively. White River, emergency supply. Treatment: Aeration, coagulation with soda ash and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,450,000 gpd.

Raw-water storage: --

Finished-water storage: 450,000 gal.

The well field and treatment plant are located west of U. S. Highway 67 bridge, three-fourths of a mile from the center of the city.

NEWPORT -- Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	East well 1	West well 2	Well 3	Finished water (composite)
Silica (SiO ₂)	36	26	34	34
Iron (Fe)	1 7	5.4	6.5	. 50
Manganese (Mn)			.51	.00
Calcium (Ca)	37	50	46	35
Magnesium (Mg)	8. 2	10	11	9, 8
Sodium (Na)	13	28	8.7	8, 6
Potassium (K)	1.8	1.6	2.0	1, 9
Carbonate (CO ₃)	0	0	0	0
Bicarbonate (HCO ₃)		203	178	135
Sulfate (SO ₄)		12	8.6	9, 5
Chloride (Cl)		35	13	16
Fluoride (F)		.0	. 1	. 1
Nitrate (NO ₃)	.2	1.2	1.5	1,0
Dissolved solids	202	268	213	182
Hardness as CaCO ₃ :				
Total	126	166	160	128
Noncarbonate	0	0	14	17
ColorpH	 7. 5	7.7	6 7. 0	5 8. 1
Specific conductance				
(micromhos at 25 C.)	283	450	309	26 0
Turbidity			1	1
Temperature (F.)			61 .	52
Date of collection	Aug. 2,	Apr. 5,	Nov. 21,	Nov. 21,
	1946	1946	1951	1951
Depth (feet)	103	103	103	
Diameter (inches)		103	103	
Date drilled		1930	1950	
Percent of supply				

NORTH LITTLE ROCK (Population, 44,097)

Ownership: Supplied by Little Rock (see Little Rock.)

PARAGOULD (Population, 9,668)

Ownership: Municipal.

Source: 3 wells (1 to 3), 500, 505, and 507 ft deep, and reported to yield 1,000,

900, and 900 gpm, respectively.

Treatment: Chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: --

Finished-water storage: 250,000 gal.

ARKANSAS 77

PARAGOULD--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water ^a		Finished water ^a
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	14 1. 0 	Hardness as CaCO ₃ : Total Noncarbonate	14 0
Calcium (Ca)	3. 2 1. 5 63 3. 2	ColorpHSpecific conductance	8. 2
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	9 162 1.4 3.2 .1	(micromhos at 25 C.)	288 Apr. 25,
Nitrate (NO ₃) Dissolved solids	. 8 183		1946

^aComposite sample, wells 1 and 2.

PINE BLUFF (Population, 37, 162)

Ownership: General Waterworks Corp.

Source: 3 wells (8 to 10), 835-850, 838, and 835-850 ft deep, and reported to

yield 1, 250, 1,000, and 1,050 gpm, respectively.

Treatment: Aeration, rapid anthrafilt filtration, sedimentation, polyphosphate (Calgon) for corrosion control, and chlorination.

ANALYSES

Rated capacity of treatment plant: 6, 170, 000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoir, 13,000,000 gal.

(Analyses, in parts per million, by U. S. Geological Survey)							
	Well 8	'Well 9	Well 10	Finished water			
+	Well 0	Men a	Well 10				
				(composite)			
Silica (SiO ₂)	12	12	13	18			
Iron (Fe)	3.3	14	3.3	. 64			
Manganese (Mn)				.00			
Calcium (Ca)	7.0		7.0	6.9			
Magnesium (Mg)	2.3	3.3		2.7			
Sodium (Na)		11	14	13			
Potassium (K)		7. 2	6.4	6.3			
Carbonate (CO ₃)	0	0	0	0			
Bicarbonate (HCO ₃)	65	82	70	67			
Sulfate (SO ₄) ······		. 6	3.7	4.2			
Chloride (Cl)		3.0	2. 5	2.8			
Fluoride (F)	.4	. 4	. 4	. 3			
Nitrate (NO ₃)	. 2	. 2	. 2	.7			
Dissolved solids		89	85	92			
Hardness as CaCO ₃ :							
Total	27	41	26	28			
Noncarbonate	0	0	0	0			

PINE BLUFF, Analyses--Continued

	Well 8	Well 9	Well 10	Finished water (composite)
ColorpH	7.9	7. 9	a. 0	6 6.8
(micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	119 Nov. 8,	139 Nov. 8,	132 Nov. 8,	125 2 76 Dec. 26,
	1945	1945	1945	1951
Depth (feet) Diameter (inches) Date drilled Percent of supply	835-850 16 1938 	838 24-16-10 1929 	835-850 24-16-10 1945 	

RUSSELLVILLE (Population, 8, 166)

Ownership: Russellville Water Co.

Source: Illinois Bayou.

Treatment: Aeration, coagulation with lime and alum, Calgon, sedimentation,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,400,000 gpd.

Raw-water storage: None.

Finished-water storage: 743,000 gal.

The treatment plant is located about 5 miles north of the city, just off U. S. Highway 64. There is some variation in the chemical character of the water during the year but the dissolved solids is low at all times.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	6. 3	4.5	Hardness as CaCO ₃ :		
Iron (Fe)		. 25	Total	15	33
Manganese (Mn)		. 00	Noncarbonate	3	19
Calcium (Ca)	3.6	9.8			
Magnesium (Mg)	1.4	2.0	Color	30	12
Sodium (Na)	1.4	1.9	pH	6.8	7. 1
Potassium (K)	1.0	.8	Specific conductance		
Carbonate (CO.)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	14	17	25 C.)	30. 9	69. 6
Sulfate (SO ₄)	2.4	15	Turbidity	3	5
Chloride (Cl)	1.8	3.0	Temperature (F.)	47	53
Fluoride (F)	. 2	.3	Date of collection	Nov. 21,	Nov. 21,
Nitrate (NO ₃)	1.0	2.2		1951	1951
Dissolved solids	29	53			

ARKANSAS 79

SEARCY (Population, 6,024)

Ownership: Municipal; supplies also Bald Knob and Judsonia. Total population

supplied, about 9, 200. Source: Little Red River.

Treatment: Aeration, coagulation with lime and alum, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,070,000 gal.

The treatment plant is $2\frac{1}{2}$ miles north of Searcy. Analyses of daily samples collected from the Little Red River near Heber Springs show a variation in chemical character of the water, but the dissolved solids is low.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	. 13	5. 7 . 41 	Hardness as CaCO ₃ : Total Noncarbonate	20 5	50 28
Calcium (Ca)	1.6 1.5	17 1.8 1.5 .8	Color	27 6.9	4 8.8
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	18 3.9 2.0 .1 1.8	18 22 4.5 .1 1.2	25 C.)	42. 0 2 45 Nov. 21, 1951	108 1 45 Nov. 21, 1951

SPRINGDALE (Population, 5,835)

Ownership: Municipal; supplies also suburban area. Total population supplied, about 5,950.

Source: Shiloh Spring. Emergency supply, lake fed by spring.

Treatment: Coagulation with alum and lime, sedimentation, rapid anthrafilt filtration, and chlorination.

Rated capacity of treatment plant: 1,150,000 gpd.

Raw-water storage: --

Finished-water storage: 585,000 gal.

SPRINGDALE -- Continued

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(IIIIal) bob,	III par to	per min	on, by o. b. deologica	1 542 1037	
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	.00	9. 9 . 21 . 00	Hardness as CaCO ₃ : Total Noncarbonate	10 4 20	115 22_
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	2.9 5.4 1.2	41 3.1 5.4 1.3	Color	16 7. 0	8 7. 7
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	8. 5	114 7.7 9.8	25 C.) Turbidity Temperature (F.)	220 8 59	244 9 60
Fluoride (F) Nitrate (NO ₃) Dissolved solids	13	.1 14 157	Date of collection	Dec. 6, 1951	Dec. 6, 1951

Regular determinations at treatment plant, 1951 a

	as	kalini CaC((ppm)	O _s	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		140 154		7. 1 7. 7	7. 2 7. 8		115 133	154 162	52 72	- <u>-</u> 0	 0	 0

^a Year ending Nov. 30, 1951.

STUTTGART (Population, 7, 276)

Ownership: Municipal.

Source: 3 wells (1 to 3), 125, 125, and 850 ft deep. The yield of the wells is reported to be 400, 200, and 1,100 gpm.

Treatment: None. Storage: 265,000 gal.

ANALYSES
(Analyses, in parts per million, by U. S. Geological Survey)

(completely in participation	111111111111111111111111111111111111111		
	Well 1	Well 3	3 wells (con:posite)
Silica (SiO ₂)	24	1.0	28
Iron (Fe)	1.1	2.8	. 74
Manganese (Mn)			. 02
Calcium (Ca)	55	28	72
Magnesium (Mg)	12	12	17
Sodium (Na)	27	32	28
Potassium (K)		7.0	1.2
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	2 66	190	326
Sulfate (SO ₄)	16	1.8	23
Chloride (Cl)	8.5	28	14
Fluoride (F)	.1	.0	. 2
Nitrate (NO.)		. 2	.1
Dissolved solids	279	213	348
Hardness as CaCO ₄ :			
Total	187	119	25 0
Noncarbonate	0	0	0

STUTTGART, Analyses, -- Continued

	Well 1	Well 3	3 wells (composite)
Color			10
рН		8.1	7.4
Specific conductance (micromhos at 25 C.)		387	540
Turbidity			2
Temperature (F.)		July 17, 1946	48 Dec. 26, 1951
Depth (feet)	125	850	
Diameter (inches)		6	
Date drilled		1946	
Percent of supply			

TEXARKANA (Population, 40,628; 15,875 in Arkansas)

Ownership: Municipal; supplies also suburban areas. Total population supplied, about 42,628.

Source: 3 well fields and 1 impounding reservoir: Arkansas Station, 22 wells ranging in depth from 40 ft to 50 ft; Texas Station, 12 wells ranging in depth from 40 ft to 50 ft; Bringle Station (used for emergency), 6 wells each about 37 ft deep; and Bringle Lake (Clear Creek impounded).

Treatment: Wells: aeration, alkali for adjustment of pH, and chlorination. Lake: prechlorination, coagulation with lime and alum, sedimentation, rapid sand filtration, postchlorination, and carbonation at times.

Rated capacity of treatment plant: 3,075,000 gpd.

Raw-water storage: --

Finished-water storage: 4,000,000 gal.

The Arkansas Station well field is near East 9th St. and Jefferson Ave.;

Texas Station is about 1 mile west of Texarkana; Bringle Station, 6 miles northwest of Texarkana; and the impounding reservoir, at Bringle Station well field.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water ^a	Arkansa Raw water	s Station Finished water	Finished water ^b	Finished water ^C
Silica (SiO ₂)	5. 1	38	36	26	36
Iron (Fe)	. 03	. 48	. 19	. 01	. 11
Manganese (Mn)		. 05	. 01		
Calcium (Ca)	9.3	7.6	17	2.4	16
Magnesium (Mg)	2.7	5.1	5.6	1. 2	4.4
Socium (Na)	5.5	19	20	7.4	19
Potassium (K)	4.2	2.5	2.6	2. 5	2.8
Carbonate (CO ₂)	0	0	16	0	0
Bicarbonate (HCO ₃)	34	31	18	10	55
Sulfate (SO ₄)	3.0	5.6	5.7	3.0	2.0
Chloride (Cl)	14	33	36	8.0	37
Fluoride (F)	. 2	. 1	.1	. 0	. 2
Nitrate (NO ₃)	. 5	12	13	9.4	2. 5
Dissolved solids	6 8	151	176	71	149
Hardness as CaCO ₃ :			ļ l		
Total	34	40	65	11	58
Noncarbonate	6	14	24	3	13

a Bringle Lake.

b Texas Station.

c Bringle Station.

TEXARKANA, Analyses--Continued

	Raw water a	Arkansa Raw water	s Station Finished water	Finished water b	Finished water ^c
Color	6.6 115 Sept. 22, 1943	5 5.8 199 2 66 Dec. 4, 1951	8 9. 1 235 4 65 Dec. 4, 1951	5.6 64.0 Sept. 22, 1943	 6.6 220 Sept. 22, 1943

a Bringle Lake.

1936

VAN BUREN (Population, 6,413)

Ownership: Supplied by Fort Smith. (See Fort Smith.)

WEST HELENA (Population, 6, 107)

Ownership: Municipal; also supplies about 1,000 people outside the city limits.

Total population supplied, about 7,100.
Source: 3 wells (4 to 6) 621, 623, and 621 ft deep. The yield of the wells is reported to be 750, 250-300, and 750 gpm.

Treatment: Aeration, addition of lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 365,000 gal.

ANALYSES

. (Analyses,	in parts	per milli	on, by U. S. Geologica	l Survey)	
	Well 5	Wells (finished water)		Well 5	Wells (finished water)
Silica (SiO ₂)	15	22	Hardness as CaCO ₃ :		
Iron (Fe)	.33	.20	Total	116	115
Manganese (Mn)		.00	Noncarbonate	0	0
Calcium (Ca)		28			
Magnesium (Mg)		11	Color		10
Sodium (Na)	163	168	pH	7.5	7.8
Potassium (K)	6.5	6.9	Specific conductance	1	
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	542	536	25 C.)	980	843
Sulfate (SO ₄)	. 8	2.0	Turbidity		2
Chloride (Cl)	24	34	Temperature (F.)	67	62
Fluoride (F)	.0	.0	Date of collection	June 27,	Dec. 26,
Nitrate (NO _s)	. 2	1.5		1946	1951
Dissolved solids	526	540			<u> </u>
Depth (feet)				623	
Diameter (inches)					

Percent of supply

b Texas Station.

c Bringle Station.

WEST MEMPHIS (Population, 9, 112)

Ownership: Municipal.

Source: 3 wells (1 to 3), each 1,509 ft deep. The yield of the wells is reported to be 300, 800, and 1,500 gpm.

Treatment: None. Storage: 400,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1	Well 2		Well 1	Well 2
Silica (SiO ₂)	10	11	Hardness as CaCO ₃ :		•
Iron (Fe)	. 25	. 16	Total	12	10
Manganese (Mn)			Noncarbonate	0	Ō
Calcium (Ca)	3.3	2.6			
Magnesium (Mg)		. 9	Color		
Sodium (Na)	41	45	р Н	7.6	7.4
Potassium (K)	2.5	1.3	Specific conductance		
Carbonate (CO.)	0	0	(micromhos at		
Bicarbonate (HCO.)	120	122	25 C.)	195	236
Sulfate (SO ₄)	3.3	5, 5	Turbidity		
Chloride (Cl)	1. 2	3.0	Temperature (F.)	76	76
Fluoride (F)		.0	Date of collection	Nov. 2,	Mar. 8,
Nitrate (NO ₃)	1. 1	.7		1945	1950
Dissolved solids		131			1000
Depth (feet)	•			1,509	1,509
				10-6	10
Date drilled					1946
			***********	1929	
Dwppij ···				Į.	

ALAMEDA, CALIFORNIA (Population, 64, 430)

Ownership: East Bay Municipal Utility District. (See Oakland.)

ALBANY (Population, 17,590)

Ownership: East Bay Municipal Utility District. (See Oakland.)

ALHAMBRA (Population, 51,359)

Ownership: Municipal.

Source: 9 wells ranging in depth from 300 to 872 ft. The yield of the wells is reported to be from 900 to 3, 150 gpm. Emergency supply from wells owned by California Water and Telephone Co., South Pasadena.

Treatment: None.

Storage: Reservoirs and tanks, 27,675,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 2	Well 8	Well 12	Longden Well	Garfield Reservoir
Silica (SiO ₂)					
Iron (Fe)	.04	.02	.02	.0	.00
Manganese (Mn)	.00	.00	00 ه	.00	.00
Calcium (Ca)	35	40	42	36	53
Magnesium (Mg)	7.0	10	11	7.8	15
Sodium (Na)	19	25	23	28	27
Potassium (K)					
Carbonate (CO ₃)	0	0		0	
Bicarbonate (HCO ₃)	129	154	146	132	151
Sulfate (SO ₄)	21	17	24	26	40
Chloride (Cl)	13	26	27	17	46
Fluoride (F)	.8	.5	.4	.8	.5
Nitrate (NO ₃)	11	20	19	21	36
Dissolved solids	221	261	262	238	3 26
Hardness as CaCO.:					
Total	115	143	149	123	196
Noncarbonate	9	17	29	15	72
Color					
р Н	7.4	7.3	7.3	7.3	7.8
Specific conductance	1				
(micromhos at 25 C.)	317	389	400	371	535
Turbidity					
Temperature (F.)					
Date of collection	Feb. 9,	Feb. 9,	Feb. 9,	Feb. 9,	Feb. 9,
	1951	1951	1951	1951	1951
Depth (feet)	734	764	862	778	~
Diameter (inches)	30-18-16	30-20-16	20	26-20	
Date drilled	1931	1935	1948	1926	
Percent of supply					
	L			L	L

^aReceives water from Wells 8, Longden, and Garfield.

ALISAL (Population, 16,714)

Ownership: Pacific Gas & Electric Co., Adcock Water Co., and Alisal Heights Water Co. Pacific Gas & Electric Co. supplies about 9,450 people in Alisal and all of Salinas; Adcock Water Co. supplies about 6,500 people in the eastern part of Alisal; Alisal Heights Water Co. supplies about 800 people in the western part of Alisal. Total population supplied, about 30,700.

ern part of Alisal. Total population supplied, about 30,700.

Source: Pacific Gas & Electric Co.: 8 wells 342 to 668 ft deep; yield reported to be from 500 to 1,260 gpm; Adcock Water Co.: 3 wells (5 to 7) 515, 501, and 380 ft deep; yield reported to be 550, 750, and 475 gpm; Alisal Heights Water Co.: 2 wells (1 and 2) 221 and 182 ft deep; yield of each well reported to be 320 gpm.

Treatment: None.

Storage: Pacific Gas & Electric Co., 200,000 gal; Adcock Water Co.: elevated tanks, 14,000 gal; Alisal Heights Water Co.: elevated tanks, 4,500 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Clay Street well a	Well 6b	Well 7b	Well 1 ^c
Silica (SiO ₂)		36	44	
Iron (Fe)	٥	.0	.0	.0
Manganese (Mn)	.0			
Calcium (Ca)	49	40	37	41
Magnesium (Mg)		13	12	14
Sodium (Na)		26	49	47
Potassium (K)		2.0	3.6	1.
Carbonate (CO.)	l o l	0	0.0	0
Bicarbonate (HCO ₃)	195	175	141	137
Sulfate (SO ₄)	57	9.5	7. 2	12
Chloride (Cl)	76	40	80	84
Fluoride (F)		. 4	.4	.0
Nitrate (NO ₃)	3.5	2.5	12	22
Dissolved solids	d 357	25 8	329	333
Hardness as CaCO ₃ :				
Total	212	153	142	160
Noncarbonate	53	10	26	48
Color	0	0	0	
рН	7.4	7.6	8.1	6.9
Specific conductance			3,7	
(micromhos at 25 C.)		420	519	
Turbidity				
Temperature (F.)		67	65	
Date of collection	Mar. 24,	M ay 16,	May 16,	Mar. 6,
	1950	1952	1952	1950
Depth (feet)	351	501	380	221
Diameter (inches)	14	501 14		12
Date drilled	1924	1947	14 1933	1946
Percent of supply		1947	1933	1940
1 F - J				

a Pacific Gas & Electric Co.

b Adcock Water Co.; analysis by Geological Survey, Sacramento, Calif.

c Alisal Heights Water Co.

d Sum of determined constituents.

ARCADIA (Population, 23, 066)

Ownership: Municipal.

Source: 11 wells ranging in depth from 462 to 862 ft. The yield of the wells ranges from 500 to 3,600 gpm. Emergency supply from wells owned by Southern California Water Co.

Treatment: None.

Storage: Reservoirs, 10,500,000 gal.

Analyses indicate that there is considerable variation in the character of the water from the individual wells of approximately same depth and at different depths. The analyses selected show the range in dissolved solids and hardness in the water from the different wells.

ANALYSES

(Analyses, in parts per million, by Pomeroy & Assoc., Pasadena, Calif.)

					
	Orange	Orange	Longden	Camino	Rancho
	Grove	Grove	Well 1 ^a	Real	Well 8
	Well 1A	Well 4A	Well 1	Well 1	W C11 0
Silica (SiO ₂)	11	12	18	14	14
Iron (Fe)					
Manganese (Mn)					
Calcium (Ca)	26	44	48	39	79
Magnesium (Mg)	5. 2	14	11	11	24
Sodium (Na)	50	33	13	19	18
Potassium (K)	1.7	1.8	3.0	1.5	2.1
Carbonate (CO ₃)					
Bicarbonate (HCO ₃)	156	187	201	182*	204
Sulfate (SO ₄)	48	60	11	21	121
Chloride (Cl)	13	15	7.0	9.3	14
Fluoride (F)	1.0	.8	.4	.9	.8
Nitrate (NO ₃)	5.6	7.4	13	2.5	. 2 8
Dissolved solids	b ₂₃₈	b 2 80	234	b 208	b ₄₀₁
Hardness as CaCO ₃ :					
Total	86	167	164	143	296
Noncarbonate	0	14	0	0	128
Color					
рН	7.5	7.5	7.6	7.8	7.4
Specific conductance					
(micromhos at 25 C.)			355		
Turbidity			1.1		
Temperature (F.)					
Date of collection	Feb. 7,	Feb. 7,	May 8,	Feb. 7,	Feb. 7,
	1951	1951	1951	1951	1951
Depth (feet)	462	466	550	714	
Diameter (inches)	22	16	26	20	
Date drilled	1921	1921	1927	1949	
Percent of supply					
			l	l	

Analyzed by California State Dept. of Public Health.

b Sum of determined constituents.

BAKERSFIELD (Population, 34, 784)

Ownership: California Water Service Co.; supplies East Bakersfield and other consumers outside the city limits. Total population supplied, about 81,000. Source: 78 wells ranging in depth from 60 to 682 ft. The yield of the wells (data on 44 wells) is reported to range from 160 to 1,250 gpm, and to average

716 gal.

Treatment: None.

Storage: Reservoirs, 10,300,000 gal.

ANALYSES

(Analyses, in parts per million, by California Water Service Co., San Jose, Calif.)

(Milaryses, in parts per in	illoii, by C	allioi iila v	atti btivit	,c 00., Dan	dobe, dum,
	Well 79-01	Well 70-01	Well 7-06	Well 11-03	Range of constituents a
Silica (SiO ₂)	14	20	24	21	9 - 33
Iron (Fe)	.08	.01	.04	.00	.do63
Manganese (Mn)	.04	.06	.01	.01	
Calcium (Ca)	5.2	23	34	62	5.2 -128
Magnesium (Mg)	1.2	3.9	7.8	14	1.0 - 75
Sodium (Na)	34	25	24		10 -171
Potassium (K)		20	2-1	"	·
Carbonate (CO _s)					-
Bicarbonate (HCO ₃)	85	115	142	205	59 -250
Sulfate (SO ₄)	11	16	24	59	6.2 -384
Chloride (Cl)	7	10	19	38	5 -411
Fluoride (F)				"	
Nitrate (NO ₃)	. 6	3.1	. 1.8	16	.0 - 35
Dissolved solids	b 115	b ₁₅₇	b 205		108 -1,010
Hardness as CaCO ₃ :	110	10.	200	0.10	
Total	18	73	118	214	18 -628
Noncarbonate	ő	0	1	44	`
Color					
pH	7.0	7.0	7.0	7.0	6.6 8.3
Specific conductance	7.0	1.0	7.0	1.0	0.0 0.3
(micromhos at 25 C.)	180	253	339	572	180 1,620
Turbidity					´
Temperature (F.)					
Date of collection	Oct. 27,	Sept. 11,	Apr. 23,	Apr. 23,	1948 - 1951
	1950	1950	1951	1951	
Depth (feet)	615	300	250	240	60 - 682
Diameter (inches)	16	16	16	16	
Date drilled	1949	1948	1946	1941	
Percent of supply					
			1		

a Based on 78 analyses (1 analysis from each well) made between 1948 and 1951. Mean values: hardness, 108 ppm; dissolved solids, 218 ppm; specific conductance, 354 micromhos.

b Sum of determined constituents.

BELL (Population, 15,430)

Ownership: Southern California Water Co.

Source: 4 wells, 540, 586, 490, and 950 ft deep. The yield of the wells is report-

ed to be 585, 275, 1,200, and 1,070 gpm.

Treatment: None. Storage: 250,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(Ishtay beb,	III parts	ber mirri	on, by o. b. Geologica	1 Dui vey	
	Watson Well	Wellsa		Watson Well	Wellsa
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	.00 .0 57 15 37 6 189 80 25	12 .03 .0 57 14 37 0 238 46 27	Hardness as CaCO ₃ : Total Noncarbonate Color Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	204 38 8. 2 Apr. 26, 1951	201 5 7.9
Dissolved solids	<u> </u>	b310	<u>L</u>		
Diameter (inches)		• • • • • • • • • • • • • • • • • • •		490 16	
				1946	
					100

a Composite.

BERKELEY (Population, 113, 805)

Ownership: East Bay Municipal Utility District. (See Oakland.)

BEVERLY HILLS (Population, 29, 032)

Ownership: Municipal; supplies also West Hollywood. Total population supplied, about 41,000.

Source: 17 wells ranging in depth from 90 to 702 ft (83 percent of supply); Colorado River (17 percent of supply; 22 percent in 1952), furnished by the Metropolitan Water District of Southern California (see Los Angeles.) The yield of the wells is reported to range from 100 to 900 gpm, and to average 540 gal.

Treatment: Aeration, softening with excess lime, recarbonation, rapid sand filtration, chlorination, and ammoniation.

Rated capacity of treatment plant: 7,500,000 gpd.

Raw-water storage: 1,171,000 gal.

Finished-water storage: 18,780,000 gal.

b Sum of determined constituents.

BEVERLY HILLS--Continued

ANALYSES

(Analyses, in parts per million, by City of Beverly Hills)

(maryses, in parts per minion, by only of Dovorty 1222)							
	Franklin Well 9	Tatum Well 1-A	City Well 1-A	Melrose M Well			
Silica (SiO ₂)	10	27	35	23			
Iron (Fe)		. 15	0	23 0			
Manganese (Mn)		. 13	U	0			
Calcium (Ca)	61	50	76	31			
Magnesium (Mg)		30	39	9			
Sodium (Na)		30	33	•			
Potassium (K)		158	195	186			
Carbonate (CO ₃)	Ρ						
Bicarbonate (HCO ₃)	281	415	517	371			
Sulfate (SO ₄) ······	72	106	79	43			
Chloride (Cl)	30	100	190	120			
Fluoride (F)		. 4	. 3	. 5			
Nitrate (NO ₃)		•					
Dissolved solids	a 405	a 676	a 868	a 594			
Hardness as CaCO ₃ :	100	3.3		302			
Total	263	248	350	114			
Noncarbonate	32	0	0	0			
Color							
pH		7.5	7.2	8.0			
Specific conductance							
(micromhos at 25 C.)	600	1,050	1,380	1.000			
Turbidity							
Temperature (F.)							
Date of collection	Spring,	Spring,	Spring,	Spring,			
	1951	1951	1951	1951			
Depth (feet)	90	400	411	600			
Diameter (inches)	16	16	16	16			
Date drilled	1921	1930	1948	1948			
Percent of supply							

^a Sum of determined constituents.

BEVERLY HILLS--Continued

ANALYSES

(Analyses, in parts per million, by City of Beverly Hills)

(Allaryses, III par	Plant 1 (raw water)	Plant 1 (finished water)	Plant 2 (raw water)	Plant 2 (finished water)
Silica (SiO ₂)	20	20	12	12
Iron (Fe)	. 20	. 10	. 20	. 20
Manganese (Mn)	.20			
Calcium (Ca)	75	25	42	22
Magnesium (Mg)		26	16	12
Sodium (Na)				
Potassium (K)	} 148	148	160	159
Carbonate (CO ₃)				
Bicarbonate (HCO ₃)	398	207	403	303
Sulfate (SO ₄)	108	110	68	70
Chloride (Cl)	138	148	84	90
Fluoride (F)	. 4	. 4	.6	. 6
Nitrate (NO_3)				
Dissolved solids	a 716	a 580	a 581	a 515
Hardness as CaCO ₃ :				
Total	310	170	170	102
Noncarbonate	0	0	0	0
Color				
рН	7.5	8.2	8.0	8. 1
Specific conductance				
(micromhos at 25 C.)	1,100	920	920	840
Turbidity				
Temperature (F.)	i			
Date of collection	October,	October,	October,	October,
	1951	<u>1951</u>	1951	1951

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water.b		330	300			7.6		320	300			
Finished water.		176	150			8.1		168	160			
Raw water.c		330	304			8.0		172	164			
Finished water C.		250	230			8.1		106	98			

^a Sum of determined constituents,

BURBANK (Population, 78, 577)

Ownership: Municipal.

Source: 11 wells (3, 4, 6, 7, and 9 to 15) ranging in depth from 180 to 790 ft, 98 percent of supply; Colorado River distributed by the Metropolitan Water District of Southern California, 2 percent of supply (5 percent in 1952), (see Los Angeles.) The yield of the wells is reported to range from 500 to 2,860 gpm.

Treatment: The well water is not treated. Colorado River water is softened and filtered by the Metropolitan Water District of Southern California.

Raw-water storage: Approximately 35,000,000 gal.

Finished-water storage: --

b Plant 1.

c Plant 2.

BURBANK--Continued

ANALYSES

(Analyses, in parts per million, by Carl Wilson, Los Angeles)

	Well 4	Well 7	Well 10	Well 11	Well 14
Silica (SiO ₂)	20	19	25	24	19
Iron (Fe)	0	0	0	0	Ö
Manganese (Mn)	ŏ	ŏ	ő	ő	Ŏ
Calcium (Ca)	67	66	52	51	50
Magnesium (Mg)	18	17	14	15	14
Sodium (Na)	33	39	35	19	31
Potassium (K)					
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO _s)	275	275	242	189	222
Sulfate (SO ₄)	43	49	47	46	41
Chloride (Cl)	24	25	12	16	16
Fluoride (F)					
Nitrate (NO ₃)	13	12	. 5	5	4
Dissolved solids	a 354	a 362	^a 305	a 269	a 284
Hardness as CaCO ₃ :					
Total	241	235	187	189	182
Noncarbonate	16	10	0	34	0
Color					
pH	7.5	· 7.4	7.9	7.9	7.8
Specific conductance					
(micromhos at 25 C.)					
Turbidity					
Temperature (F.)					
Date of collection	Sept.	Sept.	Sept.	Sept.	Sept.
	1951	1951	1951	1951	1951
Depth (feet)	227	630	588	653	730
Diameter (inches)	16	20	20	20	20
Date drilled	1924	1939		20	1950
Percent of supply	1024	1000			1330

a Sum of determined constituents.

BURLINGAME (Population, 19,886)

Ownership: Municipal.

Source: Water purchased from City of San Francisco: Crystal Springs Reservoir (93 percent of supply) and Pilarcitos Reservoir (7 percent of supply). (See San Francisco.)

Treatment: Water from Crystal Springs Reservoir is chlorinated by City of San Francisco. Water from Pilarcitos Reservoir is chlorinated by City of Burlingame.

Finished-water storage: 3,550,000 gal.

CHULA VISTA (Population, 15,927)

Ownership: California Water and Telephone Co. (See National City.)

COMPTON (Population, 47, 991)

Ownership: Municipal; supplies also about 1,000 people outside the city limits. Total population supplied, about 49,000.

Source: 9 wells (1, 2, 6, and 8 to 13), 256, 282, 280, 717, 642, 466, 640, 410, and 738 ft deep. The yield of the wells is reported to be 630, 790, 360, 740, 1, 200, 1, 080, 2, 000, 450, and 1, 350 gpm. Emergency supply from the Colorado River distributed by the Metropolitan Water District of Southern California. (See Los Angeles.)

Treatment: None.

Storage: Reservoirs, 6,000,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 1	Well 6	Well 9	Well 10	Well 11
Silica (SiO ₂)					
Iron (Fe)	. 03	. 17	.08	. 03	.04
Manganese (Mn)	.0	.0	.0	.0	.0
Calcium (Ca)	57	87	51	68	58
Magnesium (Mg)	12	18	6.7	12	10
Sodium (Na)	40	48	44	27	43
Potassium (K)					
Carbonate (CO _s)	0	0	0	0	5
Bicarbonate (HCO ₃)	212	256	173	210	205
Sulfate (SO ₄)	71	126	88	65	71
Chloride (Cl)	22	40	15	26	21
Fluoride (F)	.4	. 4	.3	.4	.3
Nitrate (NO ₂)	.0	.0	.0	.1	.0
Dissolved solids	336	505	315	387	400
Hardness as CaCO.:					
Total	191	294	154	219	187
Noncarbonate	18	81	12	47	10
Color					
pH	7.9	7.6	8.2	7.8	8.3
Specific conductance			1		
(micromhos at 25 C.)					
Turbidity	0	0	0	0	0
Temperature (F.)					
Date of collection	Mar. 21,				
	1951	1951	1951	1951	1951
Depth (feet)	256	280	642	466	640
Diameter (inches)	12	8	28-16	16	16
Date drilled	1920	1880	1947	1947	1948
Percent of supply					
	L				

CONTRA COSTA DISTRICT (Population, ----)

Ownership: California Water Service Co.; supplies Concord, Crockett, Port Chicago, and San Ramon Valley. Total population supplied, about 63,000. Source: San Joaquin River through the Contra Costa Canal (47 percent of supply), Sacramento River (45 percent of supply), Port Chicago wells (5 percent of supply), and other wells (3 percent of supply). There is an emergency connection with the East Bay Municipal Utility District. (See Oakland.)

CONTRA COSTA DISTRICT--Continued

Treatment: Surface water: prechlorination, coagulation with alum, sedimentation, activated carbon, rapid sand filtration, postchlorination, and adjustment of pH with soda ash or lime. Water from the Galindo wells is softened with zeolite.

Rated capacity of treatment plant: 12,000,000 gpd.

Raw-water storage: 1,000,000,000 gal. Finished-water storage: 5,590,000 gal.

ANALYSES

(Analyses, in parts per million, by California Water Service Co., San Jose, Calif.)

	Galindo	Government		Finished
	Well	Ranch Well 1-03	Reservoir (raw water) ^a	. h
Silica (SiO ₂)	2-37 25	21	8	8
Iron (Fe)	.06	.15	1	.10
Manganese (Mn)	. 10	.18	.13	.11
Calcium (Ca)	46	41	26	30
Magnesium (Mg)	36	31	22	19
Sodium (Na)	41	119	65	56
Potassium (K)				
Carbonate (CO.)			0	
Bicarbonate (HCO ₃)	279	288	107	112
Sulfate (SO ₄) ······	56	79	60	77
Chloride (Cl)	38	113	103	70
Fluoride (F)	.1	.1	0	.0
Nitrate (NO.)	11	11	.6	3.7
Dissolved solids	c 391	^C 557	c 338	c 319
Hardness as CaCO ₃ :				
Total	262	230	155	152
Noncarbonate	34	0	68	61
Color			0	
pH	7.9	7.5	7.2	8: 0
Specific conductance		""	,,_	
(micromhos at 25 C.)		í		
Turbidity				
Temperature (F.)				
Date of collection	Feb. 8,	Jan. 23,	Jan. 3	1949
	1950	1950	1950	

Regular determinations at treatment plant, 1950

		lkalii s Ca((p pm	CO ₃		pН		Hardness as CaCO ₃ (ppm)		Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		238	88	7.5 8.0	7.9		155 152	262	152 			

^a Surface waters.

b Composite sample, distribution system. c Sum of determined constituents.

CULVER CITY (Population, 19,720)

Ownership: Southern California Water Co.; supplies also about 4,100 people outside the city limits. Total population supplied, about 23,800.

Source: 10 wells. Sentney Plant: wells (5 to 8, 10, and 12), 266, 810, 287, 320, 290, and 650 ft deep; Pacific Plant: well (4), 335 ft deep; Sepulveda Plant: well (3), 300 ft deep; Manning Plant: wells (4 and 5), 304 and 855 ft deep. The yield of the wells is reported to range from 135 to 1, 150 gpm.

Treatment: Aeration, coagulation with ferrous chloride, activated carbon, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 2,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,350,000 gal.

ANALYSES

(Analyses, in parts per million, by Smith-Emery Co., Los Angeles, Calif.)

	Well . 06 . 03 . 01 . 44 . 44 (299) . 200 . 88 a 668	Well 1 1 1 1 1 1 1 1 1 1 1 1	Manning Wells 12 25 .04 12 .00 87 30 46 0 337 97 43 481 340
Iron (Fe) Manganese (Mn) 87 87 87 87 87 87 87 8	. 06 . 03 11! 44 4- (299 200 88 a 66	.1 .03 .55 .106 .49 .9509 .366 .188 .125	25 .04 .00 87 30 46 0 337 97 43 a 481
Iron (Fe) Manganese (Mn) 87 87 87 87 87 87 87 8	. 06 . 03 11! 44 4- (299 200 88 a 66	.1 .03 .5 .6 .6 .4 .9 .0 .9 .0 .9 .0 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	25 .04 .00 87 30 46 0 337 97 43 a 481
Manganese (Mn) 87 Calcium (Ca) 87 Magnesium (Mg) 42 Sodium (Na) 87 Potassium (K) 0 Carbonate (CO ₃) 0 Sulfate (SO ₄) 151 Chloride (Cl) 90 Fluoride (F) 90 Nitrate (NO ₃) 646 Hardness as CaCO ₃ : 389 Total 389 Noncarbonate 94	.03	5 106 6 49 4 95 0 9 366 9 188 9 5 2756	87 30 46 0 337 97 43
Calcium (Ca) 87 Magnesium (Mg) 42 Sodium (Na) 87 Potassium (K) 0 Carbonate (CO ₃) 360 Sulfate (SO ₄) 151 Chloride (Cl) 90 Fluoride (F) Nitrate (NO ₃) Dissolved solids 4646 Hardness as CaCO ₃ : 389 Noncarbonate 94	111 44 44 (299 200 88 a 669	5 106 6 49 9 95 0 9 366 9 188 125 5 2 2 3756	87 30 46 0 337 97 43 2 481
Sodium (Na)	44 299 200 89 a 669	95 0 0 0 366 9 366 188 125 5 a756	46 0 337 97 43 a 481
Sodium (Na)	290 200 89	0 0 0 366 188 125 5 a756	0 337 97 43 a 481
Potassium (K) Carbonate (CO ₃) 0 Bicarbonate (HCO ₃) 360 Sulfate (SO ₄) 151 Chloride (Cl) 90 Fluoride (F) 2 Nitrate (NO ₃) a 646 Hardness as CaCO ₃ : Total 389 Noncarbonate 94	299 209 89 a 669	9 366 9 188 9	337 97 43 a 481
Bicarbonate (HCO ₃) 360 Sulfate (SO ₄) 151 Chloride (Cl) 90 Fluoride (F) Nitrate (NO ₃) Dissolved solids a 646 Hardness as CaCO ₃ : 389 Total 389 Noncarbonate 94	299 209 89 a 669	9 366 9 188 9	337 97 43 a 481
Bicarbonate (HCO ₃) 360 Sulfate (SO ₄) 151 Chloride (Cl) 90 Fluoride (F) Nitrate (NO ₃) Dissolved solids a 646 Hardness as CaCO ₃ : 389 Total 389 Noncarbonate 94	209 89 a 669	9 188 9 125 5 ^a 756	97 43 a 481
Sulfate (SO ₄) 151 Chloride (Cl) 90 Fluoride (F) Nitrate (NO ₃) Dissolved solids a 646 Hardness as CaCO ₃ : 389 Total 389 Noncarbonate 94	a 66!	9 125 5 ^a 756	43 a ₄₈₁
Fluoride (F) Nitrate (NO ₃) Dissolved solids	a 66!	5 ^a 756	a ₄₈₁
Fluoride (F) Nitrate (NO ₃) Dissolved solids			
Nitrate (NO ₃) a 646 Dissolved solids 646 Hardness as CaCO ₃ : 389 Noncarbonate 94			
Dissolved solids			
Hardness as CaCO ₃ : Total			
Noncarbonate 94	474	467	340
	1	1 101	
Color	23	1 166	64
	8.0	7.8	7.6
Specific conductance			
(micromhos at 25 C.)			
Turbidity			
Temperature (F.)			
Date of collection Mar.	27, Apr	.7, Apr.'	7, June 2,
195	0 19	1950	1950
Depth (feet)	810	335 30	304-855
2-1-1-1	-18		10-14
Date drilled		1932 193	
Percent of supply			

^a Sum of determined constituents.

DALY CITY (Population, 15, 191)

Ownership: Municipal; supplies also about 100 people outside the city limits. Total population supplied, about 15,300.

Source: 6 wells (1, 6 to 10) 256, 400, 500, 500, 500, and 522 ft deep; yield reported to be 55, 300, 300, 350, 300, and 1,000 gpm. The wells furnish 82 percent of the total supply. Auxiliary supply from San Andres Reservoir. (See San Francisco.)

Treatment: The well water is not treated. Water from San Francisco is chlorinated by City of San Francisco.

Storage: 3 reservoirs, 3,000,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 1	Well 7	Well 8	Well 10
Silica (SiO ₂)				
Iron (Fe)	2. 0	.0	.0	3.0
Manganese (Mn)	2.0	.0	.0	.0
Calcium (Ca)	13	14	13	14
Magnesium (Mg)	12	12	12	14
Sodium (Na)	34	34	31	29
Potassium (K)				
Carbonate (CO ₃)	0	0	0	0
Bicarbonate (HCO ₃)	93	102	93	98
Sulfate (SO ₄)	12	8.0	6.0	8.9
Chloride (Cl)	31	46	44	45
Fluoride (F)	.0	.0	.0	.0
Nitrate (NO ₃)	31	5.5	4.4	1.3
Dissolved solids	226	222	202	210
Hardness as CaCO ₃ :				
Total	8 2	85	81	91
Noncarbonate	6	1	6	12
G-1				
Color				
pHSpecific conductance	7.4	7. 1	7.9	7.3
(micromhos at 25 C.)				
Turbidity	~-			
Temperature (F.)	~-			
Date of collection	Nov. 29,	Nov. 20	Nov. 20	Nov. 29,
Date of concerion	1950	Nov. 29, 1950	Nov. 29, 1950	1950
Donth (feet)				
Depth (feet)	256	500	500	522
Diameter (inches)	**	12	12	14
Percent of supply		1937	1938	1949
Fercent of Supply				

EAST BAKERSFIELD (Population, 38, 177)

Ownership: California Water Service Co. (See Bakersfield.)

EAST LOS ANGELES (Population, 92, 100)

Ownership: California Water Service Co.

Source: 43 wells ranging in depth from 276 to 815 ft. The depth of most of the wells is around 500 ft.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 8, 140, 000 gal.

ANALYSIS

(Analysis, in parts per million, by California Water Service Co., San Jose, Calif.)

	Typical composite of wells		Typical composite of wells
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	28 .04 .0 57 17 37 0 206 55 46	Hardness as CaCO ₃ : Total	212 43 7.9 1950
	· · · · · · · · · · · · · · · · · · ·		 100

a Sum of determined constituents.

EL CERRITO (Population, 18, 011)

Ownership: East Bay Municipal Utility District. (See Oakland.)

EUREKA (Population, 23, 058)

Ownership: Municipal; supplies also about 8,000 people outside the city limits. Total population supplied, about 31,000.

Source: Mad River (diversion dam); emergency supply, 3 deep wells.

Treatment: Prechlorination; coagulation with alum, sodium aluminate, and lime; sedimentation, chlorination, and rapid sand filtration. Copper (Cuprose) for control of algae.

Rated capacity of treatment plant: 2,500,000 gpd.

Raw-water storage: Approximately 750,000,000 gal impounded behind Mad River

Finished-water storage: 2,125,000 gal.

EUREKA--Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Mad River a	Wells		Mad River ^a	Wellsb
Silica (SiO ₂)			Hardness as CaCO ₃ :		
Iron (Fe)	0.4	0.2	Total	66	92
Manganese (Mn)	.0	.0	Noncarbonate	6	5
Calcium (Ca)	20	14		-	
Magnesium (Mg)	3.9	14	Color		
Sodium (Na)	2.8	20	pH	8.0	7.9
Potassium (K)			Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	73	107	25 C.)	'	
Sulfate (SO ₄)	4.3	0.	Turbidity		0
Chloride (Cl)		30	Temperature (F.)		
Fluoride (F)		.0	Date of collection	June 15,	June 14,
Nitrate (NO ₃)	0	3.5	I.	1950	1950
Dissolved solids	^c 73	^C 134			

Regular determinations at treatment plant, 1951-52

	as	kalini CaC((ppm)	- 1		рH		as	rdnes CaCC ppm)		T	urbidi	ty
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		110 95	20 8				50 60	120 118	36 33		2000 50	5 5

a Finished water except for final chlorination.

FRESNO (Population, 91,669)

Ownership: Municipal; supplies also about 16,000 people outside the city limits. Total population supplied, about 108,000.

Source: 45 wells ranging in depth from 80 to 319 ft. The depths of most of the wells are between 100 and 200 ft. The yield of the wells is reported to range from 1,000 to 2,425 gpm, and to average 1,489.

Freatment: None.

Storage: 1,880,000 gal.

b Hawthorne Street wells.

c Sum of determined constituents.

FRESNO--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

				<i> </i>
Well 2	Well 3	Well 24	Well 27	Well 32 a
73	80	71	73	58
.02		.0	.0	.01
				.00
34	28	15	18	25
19	17	8.3	13	14
29	23	18	16	22
5.9	5.2	3.4	4.4	4.3
0	0	0	0	0
202	172	101	130	174
13	9.3	9.6	8.4	3.3
20	18	6.8	8.0	18
.0	.0	.0	.0	.1
27	22	14	14	5.4
330	2 86	202	217	236
]				
163	140	72	98	120
0	0	0	0	0
7	5	10	3	
• • • • • • • • • • • • • • • • • • • •	-			7.6
""				
451	378	231	269	
0	1	3	0	
Oct. 17,	Oct. 17,	Oct. 17,	Oct. 17,	May 2,
1951	1951	1951	1951	1947
142	123	162	130	182
20	18	18	18	20
1922	1923	1925		1941
`				
	73 .02 34 19 29 5.9 0 202 13 20 .0 27 330 163 0 77.8 451 0 Oct. 17, 1951	73 80 .01	73 80 71 .00	73

^a Analyzed by Twining Laboratories, Fresno, Calif.

GLENDALE (Population, 95, 702)

Ownership: Municipal; supplies also about 400 people outside the city limits. Total population supplied, about 96, 100.

Source: 11 wells (Grandview 1 to 4, 6, 9 to 12, and Glorietta 3 and 4) ranging in depth from 180 to 640 ft and Verdugo Stream, about 99 percent of supply. The yield of the wells is reported to range from 835 to 3,190 gpm, and averages 2,117 gpm. Most of the supply is from the wells. Auxiliary supply (about 1 percent of the total; 7 percent in 1952), Colorado River distributed by the Metropolitan Water District of Southern California. (See Los Angeles.)

Treatment: None (Colorado River water is softened and filtered by Metropolitan Water District of Southern California). (See Los Angeles.) Storage: 170,000,000 gal.

GLENDALE -- Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Grandview Well 6	Grandview Well 11	Grandview Wells ^a	Glorietta Well 3	Verdugo Stream
Silica (SiO ₂)			19		
Iron (Fe)	. 60	1.3		3.8	. 68
Manganese (Mn)	.00	. 00	0	.00	.00
Calcium (Ca)	54	52	56	36	54
Magnesium (Mg)	14	13	12	14	21
Sodium (Na)	57	32	71	20	26
Potassium (K)					
Carbonate (CO _s)	0	0	0	0	0
Bicarbonate (HCO ₃)	223	214	243	149	188
Sulfate (SO ₄)	73	55	67	23	80
Chloride (Cl)	39	14	51	14	23
Fluoride (F)	.4	. 4		. 4	. 5
Nitrate (NO ₃)	5.7	, 1.4	, 3.5	, 26	$^{b}_{308}^{10}$
Dissolved solids	b ₃₅₄	^b 274	b399	b ₂₁₁	⁶ 308
Hardness as CaCO ₃ :					
Total	193	183	189	150	223
Noncarbonate	10	7	0	28	67
Color					
pH	7.7	7.9	7. 7	7. 1	6.8
Specific conductance	1	'"	• • •	•••	0.0
(micromhos at 25 C.)	628	491		389	545
Turbidity	·				
Temperature (F.)					
Date of collection	Oct. 19,	Oct. 19,	Nov. 29,	Oct. 19,	Oct. 19,
	1951	1951	1949	1951	1951
Depth (feet)	476	640		180	
Diameter (inches)	18	18		16	
Date drilled	1923	1929		1928	
Percent of supply					

^aAnalyzed by Carl Wilson, Los Angeles, Calif.

HAWTHORNE (Population, 16,316)

Ownership: Municipal; supplies also about 3,150 people outside the city limits. Total population supplied, about 19,500.

Source: 7 wells (1 to 4, 6 to 8) 569, 679, 760, 670, 490, 500, and 532 ft deep.

The yield of the wells is reported to range from 328 to 750 gpm. Emergency supply from the Lennox system of the Southern California Water Company.

Treatment: Prechlorination, coagulation with ferric chloride, softening with excess lime, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 550,000 gal.

Finished-water storage: 1,500,000 gal.

bSum of determined constituents.

HAWTHORNE--Continued

ANALYSIS

(Analysis, in parts per million, by Carl Wilson, Los Angeles)

	Finished water (composite)		Finished water (composite)
Silica (SiO2) Iron (Fe) Manganese (Mn) Calcium (Ca)	31 0 0	Hardness as CaCO ₃ : Total Noncarbonate	63 0
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	12. 8. 0 82 44	Color pH Specific conductance (micromhos at	8. 9
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	109 7, 0 52	25 C.)	February,
Nitrate (NO ₃) Dissolved solids	a ₂₉₀		1950

a Sum of determined constituents.

HUNTINGTON PARK (Population, 29, 450)

Ownership: Municipal.

Source: .11 wells ranging in depth from 510 to 1,550 ft. The yield of the wells is reported to range from 200 to 1,440 gpm. Emergency supply from wells owned by Southern California Water Co. in Bell and Maywood.

Treatment: None. Storage: 7,442,000 gal.

The weighted average hardness and dissolved solids of the water served are 228 ppm and 365 ppm, respectively.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

		· · · · · · · · · · · · · · · · · · ·			
	Weil 2	Well 6	Well 7	Well 10	Well 12
Silica (SiO ₂)	15	20	23	14	17
Iron (Fe)	.03	.00	.00	.00	.04
Manganese (Mn)	.00	.00	.05	.00	.00
Calcium (Ca)	72	85	48	47	46
Magnesium (Mg)	2მ	47	15	20	13
Sodium (Na)	54	60	42	44	45
Potassium (K)	1.9	1:4	3.0	2.4	2.3
Carbonate (CO ₃)					
Bicarbonate (HCO ₃)	216	24 8	193	201	204
Sulfate (SO ₄)	121	205	76	82	69
Chloride (Cl)	75	8 9	22	24	23
Fluoride (F)	.4	.4	.3	.4	.4
Nitrate (NO ₃)	7.1	. 4	.8	3.5	.0
Dissolved solids	a ₄₇₉	747	349	373	345
Hardness as CaCO ₃ :					
Total	2 87	408	181	201	170
Noncarbonate	110	205	23	35	3
0-					

^a Sum of determined constituents.

HUNTINGTON PARK, Analyses--Continued

	Well 2	Well 6	Well 7	Well 10	Well 12
Color	7. 4 824 1 Sept. 25, 1951	7. 5 1,000 < 1 Sept. 25,	7.7 518 < 1 Sept. 26,	7.7 548 < 1 Sept. 25,	7.8 521 <1 Sept. 25, 1951
Depth (feet) Diameter (inches) Date drilled Percent of supply	533 12 1920	1951 756 12 1908	1951 984 12 1909	1,200 18 1937	1, 504 14 1945

INGLEWOOD

(Population, 46, 185)

Ownership: Municipal; supplies also about 100 people outside the city limits.

Total population supplied, about 46,300.

Source: About 25 wells ranging in depth from 282 to 798 ft. Most of the wells are under 500 ft in depth.

Treatment: Chlorination. Storage: 4,800,000 gal.

ANALYSES (Analyses, in parts per million, by Carl Wilson)

(milaryses, ill	parts per mi	(Allaryses, in parts per infilion, by Carl Wilson)								
	Wells 9, 11, 19, 24 ^a	Well 22	Well 29	Well 33						
Silica (SiO ₂)	19	19	19	44						
Iron (Fe)		.0	. 08	. 15						
Manganese (Mn)		.0	.0	. 10						
Calcium (Ca)		84	77	73						
Magnesium (Mg)	14	24	21	25						
Sodium (Na)	52	67	79	104						
Potassium (K)										
Carbonate (CO ₃)	0	0	0	0						
Bicarbonate (HCO ₃)	249	261	281	386						
Sulfate (SO ₄)	94	70	79	74						
Chloride (Cl)	32	115	87	108						
Fluoride (F)			·	.0						
Nitrate (NO _s)	ր 1.8	h 7	h 18	h .0						
Dissolved solids	b ₄₀₆	b 515	b 518	b ₆₁₈ .0						
Hardness as CaCO ₃ :			_							
Total	235	308	279	285						
Noncarbonate	31	94	49	0						
Calan	0	0	0	0						
Color	7.7	7.3	7.5	7.5						
pH Specific conductance				.,-						
(micromhos at 25 C.)		0	0	0						
Turbidity		l								
Temperature (F.)	Oct. 26,	Oct. 26,	Oct. 26,	July 14,						
Date of confection	1949	1949	1949	1949						
•	1 10 10	,	1							

^aComposite sample.

b Sum of determined constituents.

INGLEWOOD--Continued

	Wells 9, 11, 19, 24 a	Well 22	Well 29	Well 33
Depth (feet)		403	532	495
Diameter (inches)		18	18	18
Date drilled		1938	1945	1949
Percent of supply				

LONG BEACH (Population, 250, 767)

Ownership: Municipal; supplies also about 20,000 people outside the city limits. Total population supplied, about 271,000.

Source: 29 wells (Alamitos wells, 8, 9, and 13; Citizens wells 5 to 7; Development wells 3 to 8; Wilson well; Wise wells 1 and 2; Commission wells 1 to 7 and 9 and 10; and North Long Beach wells 1, and 3 to 6), 58 percent of the supply; Colorado River distributed by the Metropolitan Water District of Southern California, 42 percent of the supply. (See Los Angeles.) The depth of the wells ranges from 324 to 1,700 ft, and the yield, from 343 to 1,830 gpm.

Treatment: Well water: prechlorination, coagulation with ferric chloride, diatomaceous earth, activated carbon, caustic soda, Calgon, sedimentation, rapid sand filtration, and postchlorination. Water from the Colorado River is softened and filtered by the Metropolitan Water District of Southern California.

Rated capacity of treatment plant: 25,000,000 gpd.

Raw-water storage: 12,173,000 gal.

Finished-water storage: Clear wells, 3,763,000 gal; other, 100,000,000 gal.

ANALYSES

(Analyses, in parts per million, by Long Beach Water Department)

(Analyses, in parts per in	inton, by Long	beach water bep	artment)
	Wells (composite, raw water)a	Wells (composite, finished water)	Finished water ab
Silica (SiO ₂)	18	17	14
Iron (Fe)		.0	.0
Manganese (Mn)			
Calcium (Ca) ······		15	19
Magnesium (Mg)	1	1	2.3
Sodium (Na)		80	101
Potassium (K)	2	2	3
·Carbonate (CO ₃)	$\bar{2}$	6	4
Bicarbonate (HCO ₃)	178	165	164
Sulfate (SO ₄)		8	64
Chloride (Cl)	22	39	48
Fluoride (F)		. 3	. 3
Nitrate (NO ₃)			
Dissolved solids	c 223	c 251	c 338
Hardness as CaCO ₃ :			
Total	41	41	62
Noncarbonate	0	0	0
Calan			
Color		8	6
рН	8.5	8.5	8.5
Specific conductance			
(micromhos at 25 C.)			
Turbidity	<1	<1	<1
Temperature (F.)			
Date of collection	1951-52	1951-52	1951-52

a Samples collected from July 1, 1951 to June 30, 1952.

ab Composite, wells and Colorado River, from distribution system.

c Sum of determined constituents.

LOS ANGELES (Population, 1,970,358)

- Ownership: Municipal; supplies also 26,000 people outside the city limits. Total estimated population supplied, 2,063,000 (1952).
- Sources of supply and the order of their use for calender year 1952: Los Angeles Owens-Mono Aqueduct 74.4 percent; Los Angeles River Sources 17.8 percent; miscellaneous local wells 4.3 percent; Colorado River distributed by Metropolitan Water District of Southern California 3.5 percent. The first three sources are now at approximate capacity use and with rising demand the city will increase its use of water from the Colorado River, which will eventually provide a large proportion of the supply.
- Treatment: Chlorination (except for a part of the supply from the emergency wells, which is not treated). All major reservoirs are chlorinated at the outlets; occasional chlorine residuals are carried from one reservoir to another.
- Raw-water storage: Grant Lake, 15,500,000,000 gal; Crowley Lake, 60,000,000,000 gal; Tinemaha Reservoir, 5,000,000,000 gal; Haiwee Reservoir, 19,000,000,000 gal; Bouquet Canyon Reservoir, 11,900,000,000 gal; Lower San Fernando Reservoir, 6,700,000,000 gal; Chatsworth Reservoir, 3,200,000,000 gal; and other smaller reservoir. Tinemaha Reservoir is used for storage only at times of excessive river flow, being primarily designed as a regulatory basin.
- Finished-water storage: Many minor reservoirs and tanks for pressure regulation. Total storage of both raw and treated water, 131,000,000,000 gal.
- The Los Angeles Owens-Mono Aqueduct sources include four streams in Mono Basin, the Owens River and streams tributary thereto and tributary to Owens Lake, and at times about 100 deep wells in the Owens Valley. The Mono Basin streams are diverted to Grant Lake and thence through an eleven-mile tunnel to the Owens River. These waters, together with approximately 38 percent of the Owens River waters, which have their origin above the Owens River Gorge, are impounded in Crowley Lake. Releases of water from Crowley Lake mingle with the remaining approximate 62 percent of the Owens River waters and, after regulation through Tinemaha, Haiwee, Fairmont, and Bouquet Canyon Reservoirs, are discharged into San Fernando Reservoir to supply the San Fernando Valley, the southwest part of Los Angeles proper, and are mixed with other sources in other parts of the City. The total length of the Los Angeles Owens-Mono Aqueduct is 338 miles, which includes approximately 66 miles of the natural channel of the Owens River.
- The Los Angeles River sources include spreading grounds, infiltration galleries, and wells in the Los Angeles River drainage basin. The more important groups of wells are the Vanowen, Whitnall, Verdugo, Headworks, and Crystal Springs.

LOS ANGELES--Continued ANALYSES

(Analyses, in parts per million, by City of Los Angeles)

		Los Angeles R	iver Sources
	Owens Valley Aqueduct a	(abc)	Vanowen Wellsa
Silica (SiO ₂)		24	23
Iron (Fe)		.02	.00
Manganese (Mn)	. 01	. 01	. 01
Calcium (Ca)	25	77	58
Magnesium (Mg)	5	20	16
Sodium (Na)		52	33
Potassium (K)		4	3
Carbonate (CO ₃)	2	0	0
Bicarbonate (HCO ₃)	138	231	192
Sulfate (SO_4)	23	139	96
Chloride (Cl)		36	18
Fluoride (F)		.4	.4
Nitrate (NO ₃)	1	12	5
Dissolved solids	d 200	d478	d 350
Hardness as CaCO ₃ :			
Total	84	274	210
Noncarbonate	00	84	53
Color			
рН	8.3	7.6	7.7
Specific conductance	0.0		•••
(micromhos at 25 C.)	317	724	538
Turbidity		2	2
Temperature (F.)	58	65	63
Date of collection			
Depth (feet)			267-595
Diameter (inches)	••••••		
Date drilled			
Percent of supply			8

^a Average for 1950-51 fiscal year.

METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA

Ownership: Metropolitan Water District of Southern California; supplies 16 constituent areas in 5 counties (Los Angeles, Orange, Riverside, San Bernardino, and San Diego) in amounts from 0 to 98 percent of supply; 22 percent of the total water production for these areas. Total population supplied, about 3,563,000 (estimated as of July 1949).

Source: Colorado River impounded in Lake Havasu. Emergency supply from San Gabriel River impounded in Morris Reservoir.

Treatment: La Verne plant (all Colorado River water except that through San Diego Aqueduct): treatment varies somewhat, but in general is as follows: prechlorination, activated carbon, coagulation with chlorine-activated silica sol (sodium silicate), intermittent partial lime softening, rapid sand filtration, zeolite or polystyrene resin softening of part of the water so that the total effluent has a hardness of about 125 ppm, postchlorination, final adjustment of pH with lime. San Diego Aqueduct: chlorination.

b This analysis was calculated according to the percentage derived from each of the sources.

c Los Angeles River, galleries, and wells.

d Sum of determined constituents.

METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA -- Continued

Rated capacity of treatment plant: 200,000,000 gpd (designed to be increased to 400,000,000 gpd).

Raw-water storage: Lake Havasu, 233,600,000,000 gal; Copper Basin Reservoir, 7,886,000,000 gal; Lake Mathews, 34,870,000,000 gal; Morris Reservoir, 12,810,000,000 gal; Gene Reservoir, 2,050,000,000 gal; San Jacinto Reservoir, 554,000,000 gal.

Finished-water storage: Palos Verdes Reservoir, 326,000,000 gal; Orange County Reservoir 65,000,000 gal; Corona Del Mar Reservoir, 4,900,000 gal.

Constituent areas of Metropolitan Water District of Southern California: Anaheim, Beverly Hills, Burbank, Coastal Municipal Water District, Compton, Fullerton, Glendale, Long Beach, Los Angeles, Pasadena, San Diego County Water Authority, San Marino, Santa Ana, Santa Monica, Torrance, and West Basin Municipal Water District (new area in M. W. D. June 1949). The West Basin Municipal Water District comprises the cities of El Segundo, Gardena, Hermosa Beach, Manhattan Beach, Redondo Beach, Palos Verdes Estates, and industrially important unincorporated areas. (As of the end of 1952, constituents areas included Chino Basin, Pomona Valley, and Orange County Municipal Water Districts. The total number of cities included in the District totaled 48 in addition to numerous suburban communities and irrigated areas. The chief cities added to those mentioned above are Inglewood, Pomona, Ontario, and Fontana, each with considerable industrial development).

Water is delivered from Lake Havasu by main aqueduct to San Diego Aqueduct and to Lake Mathews. San Diego Aqueduct connects with the main aqueduct and extends to San Vicente Reservoir of the San Diego system, a distance of 71.1 miles. The main aqueduct is 242 miles long; the total distribution system is 215 miles long, making a total aqueduct length of 457 miles.

ANALYSES

(Analyses, in parts per millions, by Metropolitan Water District of Southern Calif.)

	Raw water a	Finished water ^a		Raw water ^a	Finished water a
Silica (SiO ₂)	8.0	12	Hardness as CaCO3:		
Iron (Fe)			Total	315	125
Manganese (Mn)		!	Noncarbonate	197	6
Calcium (Ca)	79	31			
Magnesium (Mg)	28	12	Color		
Sodium (Na)	99	189	pH	8.4	8.8
Potassium (K)	4	3	Specific conductance		1
Carbonate (CO ₂)	4	12	(micromhos at		1
Bicarbonate (HCO ₃)	137	121	25 C.)	1,040	1,100
Sulfate (SO ₄)	290	290	Turbidity		
Chloride (Cl)	79	83	Temperature (F.)		
Fluoride (F)	.4	.4	Date of collection		
Nitrate (NO ₃)	. 2	2	}]
Dissolved solids	^b 661	b 692			

Regular determinations at treatment pure, 1948-49

			alinity CaCO ₃ pm)		рН		Hardness as CaCO ₃ c (ppm)			Turbidity		
	A٧	Max	Min	Αv	Max	Min	Αv	Max	Min	A٧	Max	Min
Raw water Finished water	119 111	127 151		8.3 8.8		8.0 8.4	312 125					

^aColorado River. Average for 1950-51 fiscal year.

b Sum of determined constituents. c 1952.

LYNWOOD (Population, 25, 823)

Ownership: Municipal; supplies also about 500 people outside the city limits.

Total population supplied, about 26, 300.

Source: 11 wells (2 to 12) ranging in depth from 352 to 956 ft. The yield of the wells is reported to range from 550 to 1,700 gpm, and to average 1,158.

Treatment: None.

Storage: Elevated tanks, 300,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 2	Well 3	Well 4	Well 7	Well 8
Silica (SiO ₂)	18	22	20	23	20
Iron (Fe)	.05		. 05		
Manganese (Mn)			.1		
Calcium (Ca)	112	77	62	58	54
Magnesium (Mg)	23	16	10	12	8.6
Sodium (Na)	52	49	39	31	37
Potassium (K)	4.4	4.1	3.2	2.4	4.0
Carbonate (CO _s)			7	2	2
Bicarbonate (HCO ₃)	287	268	210	24 8	237
Sulfate (SO ₄)	159	99	72	37	42
Chloride (Cl)	81	36	22	17	15
Fluoride (F)	.4	. 3	.3	.3	. 3
Nitrate (NO ₃)				1.1	. 3
Dissolved solids	660	448	352	310	306
Hardness as CaCO ₃ :					
Total	375	259	197	192	171
Noncarbonate	139	39	13	0	0
Color	0 8. 2	0 8.3	0 8.9	0 8.5	0 8.6
Specific conductance	0.2	0.0	3.5		• • •
(micromhos at 25 C.)	910	656	517	471	454
Turbidity	0.6	0. 5	0.5	0.05	0. 3
Temperature (F.)					
Date of collection	Apr. 27,	Apr. 27,	Apr. 27,	Apr. 27,	Apr. 27,
	1951	1951	1951	1951	1951
Depth (feet)	352	436	790	610	864
Diameter (inches)	16	16	16	16	16
Date drilled	1930	1924	1946	1907	1948
Percent of supply		7001			

MANHATTAN BEACH (Population, 17,330; in 1953, 26,000)

Ownership: Municipal; supplies also about 900 people outside the city limits.

Total population supplied, about 26,900.

Source: 4 wells (9, 11, 13, 14) 390, 550, 550, and 550 ft deep, 60 percent of supply; Colorado River distributed by the Metropolitan District of Southern California (see Los Angeles), 40 percent of supply. The yield of each well is reported to be 600 gpm.

Treatment: The well water is not treated. The Colorado River water is softened and filtered by the Metropolitan Water District of Southern California, and rechlorinated by Manhattan Beach.

Raw-water storage: None.

Finished-water storage: 2,850,000 gal.

ANALYSES (Analyses, in parts per million, by Carl Wilson, Los Angeles, Calif.)

	Well 9	Well 11	Well 13	Well 14
Silica (SiO ₂)	19	25	22	19
Iron (Fe)			. 02	. 02
Manganese (Mn)	0	0	0	0
Calcium (Ca)	65	42	67	65
Magnesium (Mg)	18	17	17	17
Sodium (Na)	76	86	80	68
Potassium (K)				
Carbonate (CO ₃)	0	0	0	0
Bicarbonate (HCO ₃)	287	378	298	306
Sulfate (SO_4)	28	1	35	32
Chloride (Cl)	98	37	93	65
Fluoride (F)	:			
Nitrate (NO_3)			0	0
Dissolved solids	a 445	a 394	a 461	a440
Hardness as CaCO ₃ :				
Total	236	175	237	232
Noncarbonate	0	0	0	00
Color				
н	7.8	7.7	7.7	7.7
Specific conductance	1.0	1. 1	1. 1	1.1
(micromhos at 25 C.)				
Turbidity				
Temperature (F.)				
Date of collection	June 4.	June 4,	June 4,	June 4.
	1951	1951	1951	1951
Depth (feet)	390	550	550	550
Diameter (inches)		16	16	16
Date drilled		1943	1949	1949
Percent of supply				
			<u></u>	

a Sum of determined conststuents.

MERCED (Population, 15,278)

Ownership: Crocker-Huffman Land and Water Co.; supplies also about 300 people outside the city limits. Total population supplied, about 15,600.

Source: 10 wells (1 to 5, 8, 9, 11, and 12) ranging in depth from 112 to 270 ft. The yield of the wells is reported to be 1,000, 550, 2,700 (well 3: 2 wells), 1,850, 1,950, 1,900, 1,500, 1,550, and 2,200 gpm, respectively.

Treatment: None.

Storage: Elevated tanks, 600,000 gal.

MERCED--Continued ANALYSES

(Analyses, in parts per million, by California State Department of Public Health)

	Well 1	Well 2	Well 3 (2 wells)
Silica (SiO ₂)			
Iron (Fe)	.0	.0	.0
Manganese (Mn)	0	.0	.0
Calcium (Ca) ······	20	28	25
Magnesium (Mg)	9.6	13	12
Sodium (Na)	21	9.0	24
Potassium (K)			
Carbonate (CO ₂)	0	0	0
Bicarbonate (HCO ₃)	137	149	153
Sulfate (SO ₄)		5.0	12
Chloride (Cl)	9.6	9.6	14
Fluoride (F)		.0	0
Nitrate (NO ₃)	4.4	2. 2	8. 8
Dissolved solids	194	190	243
Hardness as CaCO ₃ :			
Total	89	122	110
Noncarbonate	0	0	0
0.1			
Color			_ 0
pH	7. 2	7.6	7.2
Specific conductance			
(micromhos at 25 C.)			
Turbidity			
Temperature (F.)		4 05 1050	4 07 1050
Date of collection	Apr. 27, 1950	Apr. 27, 1950	Apr. 27, 1950
Depth (feet)	118	230	185, 187
Diameter (inches)	12	12	20, 20
Date drilled		1914	1950
Percent of supply			

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН		Hardness as CaCO ₃ (ppm)		Turbidity					
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	A٧	Max	Min
Raw water Finished water		126 	108	7. 5	7.9	7. 1	106 	122	89 			

MODESTO (Population, 17,389)

Ownership: Municipal.

Source: 25 wells ranging in depth from 70 to 300 ft. There are 15 pumping stations, 4 of which pump water from 14 of the wells. The remaining pumping stations each pump water from a single well. The yield from the pumping stations is reported to be from 700 to 2,000 gpm.

Treatment: None. Storage: 800,000 gal. CALIFORNIA

MODESTO--Continued

ANALYSES

(Analyses, in parts per million, by California State Department of Public Health)

	Well 5-1	Well 9-1	Well 10-1	Well 12-1	Well 14-1
Silica (SiO ₂)					
Iron (Fe)	.1	.0	.1	.0	.0
Manganese (Mn)		.0	. 0	. 0	.0
Calcium (Ca)	58	39	46	15	18
Magnesium (Mg)	19	12	13	4.2	4.4
Sodium (Na)	121	25	104	12.	24
Potassium (K)					
Carbonate (CO ₃)	0	0	l 0	0	0
Bicarbonate (HCO ₃)	169	184	165	95	104
Sulfate (SO ₄)	.0	6.7	.0	. 5	.0
Chloride (Cl)	248	31	183	1. 2	19
Fluoride (F)	.0	۰.۰	.0	.0	.0
Nitrate (NO.)	2.7	1.3	3,5	1.3	2. 2
Dissolved solids	a 532	a 206	a431	a 81	a ₁₁₉
Hardness as CaCO ₃ :	552		101	"	1
Total	226	148	170	55	62
Noncarbonate	84	0	34	0	0
Color				:	
рН	7. 2	7.6	7.7	7.8	7.9
Specific conductance			'''	'''	1.5
(micromhos at 25 C.)					
Turbidity			1		
Temperature (F.)	l		i		
	Dec. 27.	Dec. 27,	Dec. 27.	Dec. 27,	Dec. 27.
	1951	1951	1951	1951	1951
Donath (forth)					
Depth (feet)	200	136	110	107	125
Diameter (inches)	20	24	24	24	24
Date drilled	1918	1930	1939	1948	
Percent of supply					

a Sum of determined constituents.

MONROVIA (Population, 20, 186)

Ownership: Municipal.

Source: 6 wells (San Gabriel 1 to 4, Chapman 5 and 6), 476, 420, 500, 530, 387, and 424 ft deep, 94 percent of supply; 2 springs, 6 percent of supply. Auxiliary supply, surface water runoff from mountains when flow is adequate. Treatment: Mountain and spring supplies are chlorinated. Well water is not

treated.

Storage: 8,000,000 gal.

MONROVIA -- Continued ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	San Gabriel Well 2	Chapman Well 6	Surface water run-off
Silica (SiO ₂)	18	20	18
Iron (Fe)		. 01	
Manganese (Mn)			
Calcium (Ca)	49	42	52
Magnesium (Mg)	15	11	15
Sodium (Na)	14	20	17
Potassium (K)	1.0	3.5	3.0
Carbonate (CO ₃)			
Bicarbonate (HCO ₃)	193	204	244
Sulfate (SO ₄)	14	10	20
Chloride (Cl)	12	9.5	8.5
Fluoride (F)	. 4	1.0	. 4
Nitrate (NO ₃)	16	8.0	.4
Dissolved solids	a ₂₃₅	22 8	270
Hardness as CaCO ₃ :			
Total	185	151	190
Noncarbonate	26	0	0
Color			
pH	7.5	7.7	8. 2
Specific conductance			
(micromhos at 25 C.)	395	362	408
Turbidity	1.3	1.2	0.9
Temperature (F.)			
Date of collection	May 4, 1951	May 4, 1951	May 4, 1951
Depth (feet)	420	424	
Diameter (inches)	20	20	
Date drilled	1924	1928	
Percent of supply			

^aSum of determined constituents.

MONTEBELLO (Population, 21,735)

Ownership: Montebello Land & Water Co. supplies about 10,000 people in Montebello; South Montebello Irrigation District supplies about 7,000 people in Montebello; California Water Service Co. supplies the remainder of the population of the city.

Source: Montebello Land & Water Co., 4 wells (7, 8, 9, and 10) 900, 452, 302, and 280 ft deep, yield reported to be 1,500, 1,500, 1,500, and 2,000 gpm; South Montebello Irrigation District, 4 wells (1, 2, 3, and 4) 398, 395, 364, and 500 ft deep, yield reported to be 1,500, 1,000, 1,250, and 450 gpm; California Water Service Co., (data not furnished).

Treatment: Montebello Land & Water Co. supply, none; South Montebello Irrigation District supply, chlorination; California Water Service Co. supply, (data not furnished).

Raw-water storage: Montebello Land & Water Co., 1,500,000 gal; South Montebello Irrigation District, none; California Water Service Co., (data not furnished).

Finished-water storage: 250,000 gal (South Montebello Irrigation District).

MONTEBELLO--Continued

ANALYSES
(Analyses, in parts per million, by California state Dept. of Public Health)

	Well 7	Well 8	Well 9	Well 10		
Silica (SiO ₂)	15	19	22	19		
Iron (Fe)	.03	. 12	22	. 06		
Manganese (Mn)	.03	.12		.00		
Calcium (Ca)	75	100	82	21		
Magnesium (Mg)	75	100		40		
	12	15	14			
Sodium (Na)	38	32	36	42		
Potassium (K)	4.8	4.0	6.6	4.0		
Carbonate (CO ₃)						
Bicarbonate (HCO ₃)	239	242	254	22 8		
Sulfate (SO ₄) ·····	35	33	37	40		
Chloride (Cl)	62	100	6 8	60		
Fluoride (F)	. 3	. 3	. 3	. 3		
Nitrate (NO ₃)	. 1	. 3	.4	. 4		
Dissolved solids	a 360	a 423	a 392	a 339		
Hardness as CaCO ₃ :						
Total	236	310	262	219		
Noncarbonate	40	112	54	32		
G-1				,		
Color						
рН	8.5	8.3	8. 5	8. 5		
Specific conductance						
(micromhos at 25 C.)	59 8	723	714	608		
Turbidity	0.4		0.4	0.4		
Temperature (F.)						
Date of collection	Apr. 23,	Apr. 23,	Apr. 23,	Apr. 23,		
	1951	1951	1951	1951		
Depth (feet)	900	452	302	2 80		
Diameter (inches)	20	20	20	20		
Date drilled	1926	192 8	1944	1948		
Percent of supply						
-						
	Well 1	Well 2	Well 3 b	Well 4b		
Silica (SiO ₂)	19	18	15	12		
Iron (Fe)	. 01	. 01				
Manganese (Mn)						
Calcium (Ca)	41	46	51	78		
Magnesium (Mg)	10	4.6	10	16		
Sodium (Na)	41	46	44	52		
Potassium (K)	7.0	6.0	4.0	3.9		
Carbonate (CO ₂)	0	0	0			
Bicarbonate (HCO ₃)	195	210	210	265		
Sulfate (SO ₄) ······	34	34	46	71		
Chloride (Cl)	22	23	32	61		
Fluoride (F)	.8	.6	.4	. 3		
Nitrate (NO ₃)	20	12	1.3	. 3		
Dissolved solids	- "		a ₃₀₇	a425		
Hardness as CaCO.:	31 8	30 8	~301	~420		
Total	145	104	166	961		
Noncarbonate		134	166	261		
	0	. 0	0	44		
a Sum of determined constituents.						

^a Sum of determined constituents.^b Analyses by Pomeroy & Associates, Pasadena, California.

MONTESELLO, Analyses -- Continued

	Well 1	Well 2	Well 3b	Well 4 b
ColorpH	7.3	7.6	7.4	
Specific conductance (micromhos at 25 C.)	462	470		
Turbidity Temperature (F.)	0.04	0.85	64	61
Date of collection	May 2, 1951	May 2, 1951	Jan. 9, 1951	Jan. 9, 1951
Depth (feet) Diameter (inches) Date drilled	398 12 1920	395 12 1920	364 16 1938	500 20 1947
Percent of supply				

b Analyses by Pomeroy & Associates, Pasadena, California.

MONTEREY

(Population, 16, 205)

Ownership: California Water and Telephone Co.; supplies also Pacific Grove, Carmel, and about 30,000 people in other communities. Total population supplied, about 60,000.

Source: Carmel River (99 percent of supply) and 2 wells, 80 and 60 ft deep (1 percent of supply).

Treatment: Alum, lime, and activated carbon as needed, pressure filtration, and chlorination.

Rated capacity of treatment plant: 8,000,000 gpd.

Raw-water storage: 1,532,000,000 gal. Finished-water storage: 170,000,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Raw water ^a	Finished water ^a		Raw water a	Finished water ^a
Silica (SiO ₂)			Hardness as CaCO,:		
Iron (Fe)	0.10	0.04	Total	77	76
Manganese (Mn)	.0	l .o l	Noncarbonate	17	14
Calcium (Ca)	16	13	1.111		
Magnesium (Mg)	8.9	10	Color		
Sodium (Na)	13	12	pH	7.8	7.8
Potassium (K)			Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	73	73	25 C.)		
Sulfate (SO ₄)	18	15	Purbidity		
Chloride (Cl)	9.5	9.0	Temperature (F.)		
Fluoride (F)		.2	Date of collection	May 8,	May 8,
Nitrate (NO ₃)	.0	.0		1951	1951
Dissolved solids	154	148			

^aCarmel River.

MONTEREY PARK (Population, 20,395)

Ownership: Municipal.

Source: 4 wells (1 to 4), 410, 450, 1, 110, and 480 ft deep. The yield of the wells is reported to be 900, 1, 300, 2,000, and 900 gpm. Emergency supply from Southern California Water Co.

Treatment: None.

Storage: Reservoirs, 4,000,000 gal.

CALIFORNIA

MONTEREY PARK--Continued ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 1	Well 2	Well 3	Well 4
Silica (SiO ₂)	22	19	20	12
Iron (Fe)		. 02		.03
Manganese (Mn)				
Calcium (Ca)	35	39	30	38
Magnesium (Mg)	11	10	5.3	12
Sodium (Na)	28	28	45	30
Potassium (K)	2.0	2.0	2.0	2.6
Carbonate (CO ₃)				
Bicarbonate (HCO ₃)	a ₁₇₃	^a 176	a ₁₆₀	^a 185
Sulfate (SO ₄) ·····	22	14	22	14
Chloride (Cl)	21	20	23	24
Fluoride (F)		.6	.5	. 5
Nitrate (NO ₃)	7.5	12	4.9	14
Dissolved solids	272	262	280	284
Hardness as CaCO ₃ :				
Total	133	140	96	143
Noncarbonate	0	0	0	0
Color	0	0	0	. 0
pH	8. 2	8.4	8.6	8.4
Specific conductance				
(micromhos at 25 C.)	361	367	364	374
Turbidity	1.0	0.8	0.8	0. 9
Temperature (F.)			-	=-
Date of collection	Apr. 18,	Apr. 18,	Apr. 18,	Apr. 18,
	1951	1951	1951	1951
Depth (feet)	410	450	1,110	480
Diameter (inches)	12	16	30-16	12
Date drilled	20.0	1924	1946	1945
Percent of supply				

^a Includes the equivalent of any carbonate (CO₃) present.

NATIONAL CITY (Population, 21, 199)

Ownership: California Water & Telephone Co.; supplies Chula Vista and also about 13,200 people outside the city limits. Total population supplied, about 61,200. Source: Sweetwater River system (Loveland and Sweetwater Reservoirs); Colorado River, Metropolitan Water District of Southern California via San Diego Aqueduct (see Los Angeles); National City Well 1, 784 ft deep and reported to yield 1,100 gpm; and 6 wells 59 ft deep (average) in Sweetwater Valley. The quantity of water furnished from each source of supply varies annually depending entirely on runoff collected in the Sweetwater River system which at present (1953) is the main source of supply.

Treatment: Chlorination.

Raw-water storage: Sweetwater Reservoir, 9,976,900,000 gal; Loveland Reser-

voir, 8,420,700,000 gal.

Finished-water storage: 306, 500, 000 gal.

NATIONAL CITY--Continued

ANALYSES

(Analyses, in parts per million, by California Water & Telephone Co.)

			<u>, </u>		
	Sweet-	National		Sweet-	National
	water	City		water	City
	River a	Well 1		River a	Well 1
Silica (SiO ₂)	18	20	Hardness as CaCO ₃ :		
Iron (Fe)	.3	.1	Total	136	180
Manganese (Mn)		.0	Noncarbonate	31	0
Calcium (Ca)	30	34			
Magnesium (Mg)	15	23	Color		
Sodium (Na)	39	156	pH	8. 1	7.6
Potassium (K)	3	4.5	Specific conductance		
Carbonate (CO ₂)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	128	129	25 C.)	460	990
Sulfate (SO ₄)	35	56	Turbidity		
Chloride (Cl)	59	177	Temperature (F.)		
Fluoride (F)	.3	.4	Date of collection	Apr. 18,	Apr. 13,
Nitrate (NO ₂)		.0		1953	1953
Dissolved solids	b 265	b 600			

^a At entrance into Sweetwater Reservoir.

OAKLAND (Population, 384, 575)

Ownership: East Bay Municipal Utility District; supplies also Alameda, Albany, Berkeley, El Cerrito, Richmond, San Leandro, Vallejo (part of supply), other smaller cities, and numerous unincorporated areas in Alameda and Contra Costa Counties. Total population supplied, about 900,000.

Source: Mokelumne River impounded in Pardee Reservoir (93 percent of supply); local runoff into San Pablo, Upper San Leandro, Chabot, and Lafayette Reservoirs (7 percent of supply).

Treatment: Orinda Plant (Mokelumne River): coagulation with alum, rapid sand filtration, chlorination, and lime for pH adjustment. San Pablo and Upper San Leandro Plants: aeration, coagulation with alum, sedimentation, rapid sand filtration, chlorination, and lime for pH adjustment. Chabot and Grant Miller (Lafayette Reservoir) Plants: coagulation with alum, sedimentation, pressure filtration, chlorination, lime for pH adjustment.

Rated capacity of treatment plants: 196,000,000 gpd.

Raw-water storage: Reservoirs: Pardee, San Pablo, Upper San Leandro, Chabot, and Lafayette, 102, 759, 000, 000 gal.

Finished-water storage: About 100 distribution reservoirs, 387,900,000 gal.

Pardee Reservoir, with a storage capacity of 68, 400, 000, 000 gal, is about 94 miles northeast of the East Bay area. Water is released through an outlet tower into the twin Mokelumne Aqueducts, together capable of delivering almost 100, 000, 000 gpd by gravity flow. By operating pumping plants the daily flow can be increased to more than 210, 000, 000 gpd. Most of this water is treated at the Orinda Filter Plant and transmitted into distribution mains; the remaining amounts are stored in the four terminal reservoirs.

The storage capacity of the terminal reservoirs is as follows: San Pablo, 14,000,000,000 gal; Upper San Leandro, 13,500,000,000 gal; Chabot, 4,100,000,000 gal; Lafayette, 1,700,000,000 gal.

Although much of the water is served by gravity, the district requires 67 pumping plants and over 100 distribution reservoirs to serve those at the higher elevations.

b Sum of determined constituents.

OAKLAND--Continued

ANALYSES

(Analyses, in parts per million, by East Bay Municipal Utility District)

	Finished water ^a	Finished water b	Finished water ^C	Finished water ^d
Silica (SiO ₂)	7.2	1.3	5.6	. 4
Iron (Fe)	e.4	e _{2.6}	e.6	e 9
Manganese (Mn)	.0	.0	.0	.0
Calcium (Ca)	6.0	23	36	48
Magnesium (Mg)	. 7	5.6	13	22
Sodium (Na)	4.7	13	20	34
Potassium (K)				
Carbonate (CO ₃)	f ₂₄			
Bicarbonate (HCO ₃)	- 24	81	142	199
Sulfate (SO ₄)		24	45	71
Chloride (Cl)	5.0	13	18	32
Fluoride (F)		.1	. 2	. 2
Nitrate (NO ₃)				
Dissolved solids	g ₃₇	g ₁₂₂	220	316
Hardness as CaCO ₃ :				
Total		81	144	208
Noncarbonate	0	15	28	45
Color				7.9
рН	9.1	8.0	7.9	7.9
Specific conductance		}		
(micromhos at 25 C.)			- <i>-</i>	
Turbidity				
Temperature (F.)	T 1050	T 1050	Tuno 1050	June 1950
Date of collection	June 1950	June 1950	June 1950	anne 1200
	[i i	

a Mokelumne River. b San Pablo Reservoir. c Upper San Leandro Reservoir. d Chabot Reservoir. e Iron and aluminum oxides.

g Sum of determined constituents.

OILDALE (Population, 16,615)

Ownership: Oildale Mutual Water Co.

Source: 13 wells ranging in depth from 466 to 722 ft. The yield of the wells is re-

ported to range from 680 to 940 gpm.

Treatment: None. Storage: 75,000 gal.

f Includes the equivalent of any carbonate (CO3) as bicarbonate (HCO3).

OILDALE--Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 5	Well 8	Well 10	Well 11
Silica (SiO ₂)	27	36	33	32
Iron (Fe)	.0	.0	.0	.0
Manganese (Mn)	.0	.0	.0	.0
Calcium (Ca)	55	2 5	45	33
Magnesium (Mg)	8.3	3.2	7.9	5.3
Sodium (Na)	25	22	25	22
Potassium (K)	4.8	4.4	1.1	.8
Carbonate (CO ₃)	0	0	0	0
Bicarbonate (HCO ₃)		92	155	102
Sulfate (SO_4)	61	28	16	31
Chloride (Cl)		16	39	24
Fluoride (F)		.0	.0	.0
Nitrate (NO ₃)		2.2	.0	2. 2
Dissolved solids	326	179	272	216
Hardness as CaCO _s :				
Total	171	76	145	104
Noncarbonate	76	0	18	21
ColorpH	7.3	7.8	 7. 2	7. 7
Specific conductance	.,,			
(micromhos at 25 C.)	479	258	404	321
Turbidity	<1	<1	<1	<1
Temperature (F.)				
Date of collection		Sept. 18,	Sept. 18,	Sept. 18,
	1951	1951	1951	1951
Depth (feet)	466	643	533	512
Diameter (inches)	16	16	16	16
Date drilled	1933	1939	1942	1945
Percent of supply				

ONTARIO (Population, 22,872)

Ownership: Municipal; supplies about 300 people outside the city limits. Total population supplied, about 23,200.

Source: 8 wells (1 to 8), 600, 600, 604, 507, 551, 496, and 536 ft deep. The yield of the wells is reported to be 945, 1,650, 1,500, 1,600, 2,400, 2,400, 1,420, and 450 gpm. Emergency supply from well and surface water of San Antonio Water Co.

Treatment: None. Storage: 14,750,000 gal.

ONTARIO--Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 1	Well 6	Well 7
Silica (SiO ₂)	27	29	34
Iron (Fe)		. 02	
Manganese (Mn)			
Calcium (Ca)	53	47	46
Magnesium (Mg)	6.3	6.4	7.6
Sodium (Na)	15	16	18
Potassium (K)	3.0	2.0	
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	200	187	172
Sulfate (SO ₄)	9.5	8.0	14
Chloride (Cl)	7.0	6.0	9
Fluoride (F)	.4	. 2	. 4
Nitrate (NO ₃)	1.9	2.5	2.6
Dissolved solids	236	208	238
Hardness as CaCO ₃ :			
Total	` 158	144	145
Noncarbonate	0	0	4
Color	0	اه	0
pH	8.5		8.5
Specific conductance	0.0		0.0
(micromhos at 25 C.)	352	327	343
Turbidity	1.6	2.2	1.7
Temperature (F.)			
Date of collection	Apr. 12, 1951	Apr. 13, 1951	Apr. 13,1951
Depth (feet)	600	551	496
Diameter (inches)	16	26	16
Date drilled	1910	1930	
Percent of supply	1910	1990	

OXNARD

(Population, 21,567; census 1952, 26,353)

Ownership: Municipal.

Source: 6 wells (1 to 6) 234, 234, 232, 252, 235, and 240 ft deep; yield reported to be 1,080, 1,120, 1,000, 1,440, 1,600, and 1,700 gpm.

Treatment: None. Storage: 1,000,000 gal.

OXNARD--Continued

ANALYSES

(Analyses, in parts per million, by Smith-Emery Co., Los Angeles, Calif.)

	Wells (composite sample)	Well 1	Well 5
Silica (SiO ₂)	7. 5		
Iron (Fe)		. 25	0
Manganese (Mn)			.8
Calcium (Ca) ·····	155	153	197
Magnesium (Mg)	42	51	61
Sodium (Na)		8 6	93
Potassium (K)			
Carbonate (CO ₃)	3	0	0
.Bicarbonate (HCO ₂)	262	230	248
Sulfate (SO ₄)	471	501	625
Chloride (Cl)	55	58	61
Fluoride (F)		.6	. 7
Nitrate (NO_3)		6.0	2.4
Dissolved solids	^a 968	a 969	a _{1,160}
Hardness as CaCO ₃ :			
Total	561	594	745
Noncarbonate	340	402	540
ColorpH	 8. 2	7.4	 7. 4
(micromhos at 25 C.)	1,500		
Turbidity			
Temperature (F.)			
Date of collection	Nov. 24, 1950	Dec. 8, 1950	Dec. 8, 1950
Depth (feet)		234	235
Diameter (inches)		14	14
Date drilled		1912	
Percent of supply			

^aSum of determined constituents.

PALO ALTO (Population, 25, 475)

Ownership: Municipal; supplies also about 9,750 people outside the city limits. Total population supplied, about 35,200.

Source: San Francisco city supply (see San Francisco, Bay Crossing lines) 60 percent of supply; 9 wells, 250 to 600 ft deep, 40 percent of supply.

Treatment: Chlorination. Raw-water storage: --

Finished-water storage: 4,980,000 gal.

PALO ALTO--Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Main Station Well	M ayfield Well ^a	Middlefield Well	Oregon Well
Silica (SiO ₂)				
Iron (Fe)	. 04	. 6	0	. 26
Manganese (Mn)	. 0	0	0	. 1
Calcium (Ca)	61	41	39	82
Magnesium (Mg)	14	12	11	22
Sodium (Na)	86	65	110	102
Potassium (K)				
Carbonate (CO ₃)	0	0	0	0
Bicarbonate (HCO ₃)	283	244	271	254
Sulfate (SO_4) ······	44	40	33	36
Chloride (Cl)	83	35	90	170
Fluoride (F)	. 0	0	0	. 1
Nitrate (NO ₃)	. 4	1.1	0	1.8
Dissolved solids	575	438	552	668
Hardness as CaCO ₃ :				
Total	211	151	142	291
Noncarbonate	0	0	0	87
Color				
pH	7.7	7.9	7.9	8.1
Specific conductance				
(micromhos at 25 C.)				
Turbidity				
Temperature (F.)				
Date of collection	Feb. 6,	Feb. 6,	Feb. 6,	Feb. 6,
	1951	1951	1951	1951
Depth (feet)	446	526	600	512
Diameter (inches)		14	14	14
Date drilled		1931	1932	1930
Percent of supply				

^a Also known as Park Boulevard Well.

PASADENA (Population, 104, 577)

Ownership: Municipal.

Source: Colorado River distributed by Metropolitan Water District of Southern California, 62 percent of supply (see Los Angeles); 14 wells ranging in depth from 642 to 1, 220 ft, 35 percent of supply; Arroyo Seco, Eaton Canyon, and Millard Streams, 3 percent of supply.

Treatment: Colorado River: softened and filtered by Metropolitan District of Southern California (see Los Angeles). Local supplies: chlorination and ammoniation.

Rated capacity of treatment plant: --

Raw-water storage: --

Finished-water storage: 103,000,000 gal.

PASADENA -- Continued

ANALYSES

(Analyses, in parts per million, by City Of Pasadena)

	Jourdan Well ^a	Garfield Well a	Woodbury Well ^a	Sunset Well a	Copelin Well ^a
Silica (SiO ₂)	30	30	26	30	30
Iron (Fe)	.03	.03	.06	. 03	.03
Manganese (Mn)					
Calcium (Ca)	42	20 ·	24	37	47
Magnesium (Mg)	11	4.0	3.7	11	15
Sodium (Na)	} 17	25	33	23	26
Carbonate (CO ₂)	0	0	0	0	0
Bicarbonate (HCO ₃)	178	99	123	159	216
Sulfate (SO ₄)	13	13	21	18	28
Chloride (Cl)	10	10	12	14	13
Fluoride (F)	(b)				
Nitrate (NO ₂)	8.7	9.9	6.7	14	6.4
Dissolved solids	C 219	C 161	C 187	c 22 5	^c 272
Hardness as CaCO ₂ :					
Total	151	65	74	139	179
Noncarbonate	5	0	0	9	2
Color					
pH	7.4	7.7	7.8	7.4	7.3
Specific conductance	,,,,,	•	1		
(micromhos at 25 C.)					
Turbidity					
Temperature (F.)					
Date of collection					
Depth (feet)	729	720	1220	751	700
Diameter (inches)	26	26		26	26
Date drilled	1926	1921	1930	1924	1921
Percent of supply	11	7	6	6	3

	Eaton Canyon	Arroyo Seco		Eaton Canyon	Arroyo Seco
	Stream a	Stream a		Stream a	Stream a
Silica (SiO ₂)	19	24	Hardness as CaCO ₃ :		
Iron (Fe)	. 04	. 07	Total	175	213
Manganese (Mn)			Noncarbonate	4	5
Calcium (Ca)	45	56			
Magnesium (Mg)		18	Color		
Sodium (Na)	h		рН	8.2	7.9
Potassium (K)	} 14	26	Specific conductance		
Carbonate (CO ₂)	۲ ه	lol	(micromhos at		
Bicarbonate (HCO.)	208	254	25 C.)		
Sulfate (SO ₄)	21	36	Turbidity		
Chloride (Cl)		13	Temperature (F.)		
Fluoride (F)			Date of collection		
Nitrate (NO ₃)		.4	l l	1	
Dissolved solids		c299			_

^a Average for year 1950-51. b Weighted average fluoride content of sources of supply about 0.7 ppm. Annual Report 1952-53, Pasadena Water Dept. c Sum of determined constituents.

POMONA (Population, 35, 405)

Ownership: Municipal.

Source: 12 wells (1 to 12) ranging in depth from 495 to 1, 104 ft, and 2 tunnels (1 and 3). The yield of the wells is reported to range from 400 to 1,500 gpm,

and to average 843 gpm.

Treatment: None.

Storage: Reservoirs, 15,000,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 4	Well 5	Well 8	Well 11	Tunnel 3
Silica (SiO ₂)	20	19	18	23	16
Iron (Fe)					
Manganese (Mn)					
Calcium (Ca)	72	52	68	52	37
Magnesium (Mg)	12	8.5	7.6	9.3	4.0
Sodium (Na)	12	20	32	12	31
Potassium (K)	11	4.6	4.4	3.8	3.0
Carbonate (CO ₃)					
Bicarbonate (HCO ₃)	214	184	170	189	172
Sulfate (SO ₄)	29	27	64	20	21
Chloride (Cl)	11	9	13	7.0	10
Fluoride (F)	.3	.4	.2	.3	.8
Nitrate (NO ₂)	48	32	80	17	13
Dissolved solids	321	270	386	256	218
Hardness as CaCO.:					
Total	231	166	202	169	108
Noncarbonate	56	15	62	14	0
Color	0	0	0	0	0
рН	7.0	7.3	7.1	7.3	7.3
Specific conductance					
(micromhos at 25 C.)	495	403	540	382	330
Turbidity	1.2	0.8	0.7	0.6	0.9
Temperature (F.)					
Date of collection	May 9,	May 9,	May 9,	May 9,	May 9,
	1951	1951	1951	1951	1951
Depth (feet)	537	575	960	566	
Diameter (inches)	20	20	16	20	
Date drilled	1940	1930	a 1926	1947	
Percent of supply	l	l	l '		

^a Drilled prior to 1926.

REDLANDS (Population, 18, 429)

Ownership: Municipal; supplies also Bryn Mawr, Loma Linda, and Mentone. Total population supplied, about 23,200.

Source: 11 wells (10 to 16, 30, 32, Maquet 1 and 2, and East Lugonia 3) ranging in depth from 88 to 687 ft (67 percent of supply); and Mill Creek (33 percent of supply). The yield of the wells is reported to range from 225 to 3,096 gpm, and to average 1,345 gpm.

Treatment: Water from the wells is not treated. Mill Creek: prechlorination, coagulation with alum of ferric chloride when the water is very turbid, rapid sand (pressure) filtration.

Rated capacity of treatment plant: 7,750,000 gpd.

Raw-water storage: --

Finished-water storage: Reservoirs, 14,360,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Wellsa	Mill Creek (raw water)		Wellsa	Mill Creek (raw water)
Silica (SiO ₂)		9	Hardness as CaCO ₃ :		
Iron (Fe)			Total	191	123
Manganese (Mn)			Noncarbonate	11	13
Calcium (Ca)		38			
Magnesium (Mg)		6.7	Color	0	0
Sodium (Na)	40	8.9	pH	8.4	8.9
Potassium (K)		.3	Specific conductance		
Carbonate (CO ₃)			(micromhos at		
Bicarbonate (HCO ₃)	220	134	25 C.)	503	240
Sulfate (SO ₄)	43	15	Turbidity	2.7	3.5
Chloride (Cl)	19	2.0	Temperature (F.)		
Fluoride (F)	.4	.8	Date of collection	Apr. 18,	Apr. 18,
Nitrate (NO ₃)		.9		1951	1951
Dissolved solids	b 338	172		1 .	
Depth (feet)				347 to 687	
Diameter (inches)	•••••			18 to 20	
Date drilled	•	. 		1913.	
Percent of supply	••••••	• • • • • • • • • • • • • • • • • • • •		1925	

a Raw water from wells 10, 11, 12, 13, 14, and 16, Roosevelt Road Plant.

b Sum of determined constitents.

REDONDO BEACH (Population, 25, 226)

Ownership: California Water Service Co.; supplies also Hermosa Beach and about 3,000 people outside the city limits. Total population supplied, about 48,200. Source: 13 wells ranging in depth from 286 to 600 ft (95 percent of supply); auxiliary supply from Colorado River distributed by the Metropolitan Water District of Southern California (5 percent of supply). (See Los Angeles.) The yield of the wells is reported to range from 180 to 1,052 gpm, and to average 557 gal.

Treatment: Chlorination of well water. Colorado River water is softened and filtered by the Metropolitan Water District of Southern California.

Storage: 3,450,000 gal.

REDONDO BEACH--Continued

ANALYSES

(Analyses, in parts per million, by California Water Service Co., San Jose, Calif.)

	Well 5-04	Well 21-01	Well 22-01	Well 25-01	Well 5-02
Silica (SiO ₂)	21	28	18	33	21
Iron (Fe)	. 01	. 22	.01	.08	. 22
Manganese (Mn)	.03	.10	. 07	.0	.07
Calcium (Ca)	52	38	48	27	54
Magnesium (Mg)	15	24	15	12	16
Sodium (Na)	56	79	54	99	62
Potassium (K)					
Carbonate (CO ₃)					
Bicarbonate (HCO ₃)	252	305	263	305	254
Sulfate (SO ₄)	44	5.3	23	12	43
Chloride (Cl)	44	77	44	50	56
Fluoride (F)					
Nitrate (NO _s)	2.5	.6	.0	0	1.8
Dissolved solids	a ₃₅₉	a 403	a 332	a ₃₈₄ .0	a 379
Hardness as CaCO _s :					
Total	191	194	182	117	200
Noncarbonate	0	0	0	0	0
Color					
pH	7.9	7.7	7.8	7.9	8.0
Specific conductance		•••			0.0
(micromhos at 25 C.)	612	715	59 0	65 3	644
Turbidity	012	0	0	0	Ô
Temperature (F.)	74	74	72	75	72
Date of collection	Apr. 13,	Feb. 19,	Apr. 25,	May 10,	Apr. 11,
Date of Collection	1950	1951	1950	1950	1950
Depth (feet)	520	456	600	504	349
Diameter (inches)	16	16	16	16	16
Date drilled	1949	1944	1948	1950	1908
Percent of supply	1949	1917	1340	1000	

^aSum of determined constituents.

REDWOOD CITY

(Population, 25,544; census 1953, 34,005)

Ownership: Municipal; supplies also about 4,900 people outside the city limits. Total population supplied, about 30,400.

Source: Hetch Hetchy aqueduct is principal source of supply. (See San Francisco, Bay Crossing lines.) Emergency supply, small private wells, only.

Treatment: Chlorination by City of San Francisco.

Storage: 6,420,000 gal.

REDWOOD CITY--Continued

ANALYSIS

(Analysis, in parts per million, by City of San Francisco)

	Finished water a	·	Finished water
Silica (SiO ₂)	7	Hardness as CaCO ₃ :	
Iron (Fe)	. 03	Total	56
Manganese (Mn)	0	Noncarbonate	8
Calcium (Ca)	15		
Magnesium (Mg)	4.6	Color	
Sodium (Na)	11	pH	7. 5
Potassium (K)		Specific conductance	
Carbonate (CO _s)	0	(micromhos at	
Bicarbonate (HCO ₃)	59	25 C.)	163
Sulfate (SO ₄)	19	Turbidity	6
Chloride (Cl)	9	Temperature (F.)	
Fluoride (F)	.1	Date of collection	Mar. 1,
Nitrate (NO ₃)	.1		1950
Dissolved solids	95		

Regular determinations at treatment plant, 1950-51b

	Alkalinity as CaCO ₃ (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity				
	A٧	Max	Min	Αv	Max	Min	A٧	Max	Min	Av	Max	Min
Raw water Finished water				9.0			36	164	 12	2.3	9	. 5

^a Composite sample, Bay Crossing lines. The composition of the water supplied during a year may vary over a considerable range depending on the quantity of water taken from each of the various sources of supply.

b Fiscal year, San Francisco Water Dept.

RICHMOND (Population, 99,545)

Ownership: East Bay Municipal Utility District. (See Oakland.)

RIVERSIDE (Population, 46,764; census 1952, 56,000)

Ownership: Municipal; supplies also about 1,600 people outside the city limits. Total population supplied, about 57,600.

Source: 26 wells in the San Bernardino artesian basin. Well depths range from 300 to 1,192 ft. Most of these wells are flowing. Auxiliary supply from 5 wells in Riverside.

Treatment: None.

Storage: Reservoirs, 22,000,000 gal.

RIVERSIDE -- Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Com- posite sample a	Warren Well 2	Raub Well 2	Hunt Wells (5 wells)	Cooley Wells (9 wells)
Silica (SiO ₂)	16	17	1 5	18	18
Iron (Fe)			. 01		
Manganese (Mn)					
Calcium (Ca)	27	33	28	26	35
Magnesium (Mg)	4	4.4	2.7	4.9	7.0
Sodium (Na)	50	16	57	51	31
Potassium (K)		3.2	5.6	3.6	4.4
Carbonate (CO ₃)	0				
Bicarbonate (HCO ₂)	162	144	151	162	175
Sulfate (SO ₄)	34	16	44	31	28
Chloride (Cl)	18	5.5	27	24	8.0
Fluoride (F)	.4	.5	.8	.4	. 2
Nitrate (NO.)		1.1	1.4	1.9	1.3
Dissolved solids	b 229	17 0	246	262	216
Hardness as CaCO _s :					
Total	84	102	80	85	116
Noncarbonate	0	0	0	0	0
Color		0	0	0	0
pH		7.2	7.4	7.7	7.4
Specific conductance	350	266	208	374	355
(micromhos at 25 C.) Turbidity	330	1.2	0.9		0.5
Temperature (F.)		1.2	0.0		
Date of collection	Nov. 17,	May 8,	May 8,	May 8,	May 8,
Date of confection	1950	1951	1951	1951	1951
Depth (feet)		485	1 102	409-868	520-1,138
Diameter (inches)		20	20		10-20
Date drilled	• • • • • • • • • • • • • • • • • • • •	1930	1931		1899-1947
Percent of supply		1930	1931	1912-40	1000-1041
Percent of supply					

a City tap.

SACRAMENTO (Population, 137, 572)

Ownership: Municipal; supplies about 132,700 people in the city; Southern California Water Co. supplies about 10,000 people; Jacinto Developers Inc. supplies 2,500 people. A number of people outside the city are also supplied. Total population supplied, about 146,200.

Source: Municipal: Sacramento River and 6 wells (standby); Southern California Water Co: 8 wells; Jacinto Developers, Inc.: 4 wells.

Treatment: Sacramento River: coagulation with alum, sedimentation, rapid sand filtration, and chlorination. Wells: none.

Rated capacity of treatment plant: 64,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 14,000,000 gal.

The intake in the Sacramento River is just below the mouth of the American River.

Analytical data indicate that at times the water withdrawn represents chiefly

American River water. The well systems and the system served with Sacramento River water are all separate.

b Sum of determined constituents.

SACRAMENTO--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water ^a	Finished water a		Raw water ^a	Finished water a
Silica (SiO ₂)	9.2	9.1	Hardness as CaCO ₃ :		
Iron (Fe)	.0	0.0	Total	20	21
Manganese (Mn)			Noncarbonate	0	6
Calcium (Ca)	4.6	5.0		·	
Magnesium (Mg)	2.0	2.0	Color	15	0
Sodium (Na)	1.5	1.5	pH	7.2	6.7
Potassium (K)	. 6	.9	Specific conductance		ļ
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	23	18	25 C.)	46.8	54.6
Sulfate (SO ₄)	1.7	7.6	Turbidity		
Chloride (Cl)		1.4	Temperature (F.)	54	58
Fluoride (F)	0	0.0	Date of collection	June 6,	June 6,
Nitrate (NO ₃)	. 6	.4		1952	1952
Dissolved solids		37			

Regular determinations at treatment plant, 1950

•	as	kalini CaC((ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water	42	104	14	7.3	7.7	7.0	56	120	24	36	750	7
Finished water	_33	90	6	6.7	7.2	6.2	56	120	24	0	0	0

a Sacramento River.

SAN BERNARDINO

(Population, 63,058; special census 1952, 73,827)

Ownership: Municipal.

Source: 30 wells ranging in depth from 40 to 1,408 ft (82 percent of supply), and Lytle Creek (18 percent of supply). The yield of the wells is reported to range from 125 to 2,900 gpm, and to average 1,298 gal (data on 21 wells).

Treatment: Chlorination of creek water; well water not treated.

Storage: Reservoirs, 37,690,000 gal.

SAN BERNARDINO--Continued ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Antil Well 5	17th St. & Sierra Way Well	Hanford Well 1	Perris Hill Well 3	Lytle Creek ^a
Silica (SiO ₂)		14	9	15	
Iron (Fe)		.03			0
Manganese (Mn)			·		
Calcium (Ca)	24	52	47	31	52
Magnesium (Mg)	1.8	9.5	7.7	6.1	6
Sodium (Na)	44	12	17	32	41
Potassium (K)	2.2	4.0	4.0	.3	
Carbonate (CO ₃)					
Bicarbonate (HCO ₃)	127	210	188	129	244
Sulfate (SO ₄)	42	13	30	27	27
Chloride (Cl)	7.4	4.8	10	18	12
Fluoride (F)	. 4	.4	. 4	.8	
Nitrate (NO ₃)	1.3	5.3	3.7	3. 5	լ
Dissolved solids	232	244	24 0	b ₁₉₇	b 258
Hardness as CaCO ₃ :					
Total	67	169	149	102	154
Noncarbonate ······	0	0	0	0	0
	_	_			
Color	0	0	0	0	
pH	8.8	8.5	8.4	8.0	8.0
Specific conductance	010	000	005	0.50	
(micromhos at 25 C.)	319	339	325	352	
Turbidity	1.1	1.1	1.0	3.5	
Temperature (F.) Date of collection	Ann 10	A 10	Am. 10	A 10	1040
Date of confection	Apr. 18,	Apr. 18,	Apr. 18,	Apr. 18,	1940
	1951	1951	1951	1951	
Depth (feet)	1,408	700	752	265	
Diameter (inches)		20	16	20	
Date drilled	1929	1948	1920	1930	
Percent of supply					

^a Special Bulletin No. 63, California Water Supply Statistics, California State Dept. of Health.

^b Sum of determined constituents.

SAN DIEGO

(Population, 334, 387; special census 1952, 434, 924)

Ownership: Municipal; supplies San Dieguito Irrigation District, Santa Fe Irrigation District, Del Mar, and part of Coronado. Total population supplied, about 450,000.

Source: San Diego River system (47 percent of supply), Cottonwood-Otay system (43 percent of supply), and San Dieguito system (10 percent of supply). Imported supply, Colorado River through the Colorado River Aqueduct and San Diego Aqueduct of the Metropolitan Water District of Southern California, and the San Diego County Water Authority. (See Los Angeles.)

Treatment: Alvarado plant: prechlorination, coagulation with ferric sulfate, partial softening with lime, settling, polyphosphate, rapid sand filtration, and fluoridation; Lower Otay plant: pressure filtration, chlorination, and fluoridation; Torrey Pines plant: pressure filtration, chlorination, and fluoridation. There are 2 stations for chlorination only.

Rated capacity of treatment plant: Alvarado plant: 66,000,000 gpd; Lower Otay plant: 16,000,000 gpd; Torrey Pines plant: 3,000,000 gpd.

Raw-water storage (capacity): 130,085,000,000 gal. Finished-water storage (capacity): 136,000,000 gal.

SAN DIEGO--Continued

The percentages of supply shown above are the "normal" percentages. Considerable quantities of Colorado River water have been used for the past few dry years, due to extremely low production of local supplies. For the year ending June 30, 1951, almost 90 percent of the supply came from the Colorado River, distributed through the San Dieguito system and San Vicente Reservoir, and for the year ending June 30, 1952, 75 percent. As of 1952, the city's entitlement to Colorado River water was approximately 53,000,000 gpd.

The San Diego River system includes water from the San Diego River and tributaries, and is stored in El Capitan and San Vicente Reservoirs. However, most of the water received at present in San Vicente Reservoir is Colorado River water through the San Diego Aqueduct. Water from the San Diego River system is treated at the Alvarado Plant.

The Cottonwood-Otay system includes water from Buckman and La Posta Creeks (tributaries of Cottonwood Creek) stored in Morena Reservoir, Cottonwood and Pine Valley Creeks stored in Barrett Reservoir, and Dulzura Creek stored in Lower Otay Reservoir. All Cottonwood-Otay sources eventually reach Lower Otay Reservoir, the water from which is treated at the Lower Otay Plant.

The San Dieguito River system stores water from the San Dieguito River in Lake Hodges and San Dieguito Reservoir. Water from this system is treated at Torrey Pines Plant.

ANALYSES

(Analyses, in parts per million, by City of San Diego)

	Alvarado		Reservo	oirs a	
	finished watera	El Capitan	San Vicente	Lower Otay	San Dieguito
Silica (SiO ₂)	11	18	10	12	12
Iron (Fe)	0	. 05	. 02	. 13	. 05
Manganese (Mn)	l 0	0	0	. 03	0
Calcium (Ca)	60	44	75	34	64
Magnesium (Mg)	20	13	26	21	23
Sodium (Na)	81	43	107	82	88
Potassium (K)	1				
Carbonate (CO ₃)	9	0	5	0	0
Bicarbonate (HCO ₃)	78	208	159	235	154
Sulfate (SO ₄)	217	45	26 5	50	249
Chloride (Cl)	77	41	81	90	80
Fluoride (F)	b.9	b.3	b.4	b.5	b.4
Nitrate (NO ₃)	.8	. 4	.3	0	0
Dissolved solids	514	307	648	406	592
Hardness as CaCO ₃ :					
Total	231	181	29 5	170	253
Noncarbonate	155	10	157	0	127
Color					
рН	8.4	7.8	7.8	7.6	7.9
Specific conductance					
(micromhos at 25 C.)	959	500	970	750	980
Turbidity	<1	<1	<1	<1	<1
Temperature (F.)					
Date of collection	1951-52	1951-52	1951-52	1951-52	1951-52
	1				

^a All results are averages of monthly and quarterly analyses for 1951-52 fiscal year.

b Fluoride average 0.9 ppm after beginning of treatment (Dec. 1952).

SAN FRANCISCO (Population, 775, 357)

- Ownership: Municipal; furnishes the entire supply for Belmont, Belmont Water District, Burlingame, Moffett Field, Redwood City, San Carlos, San Mateo, and Sunol; furnishes part of the supply for Alameda County Water District, Atherton, Daly City, Menlo Park, Millbrae, Palo Alto, and South San Francisco. Total population supplied, about 975,000.
- Source: Hetch Hetchy system (60 percent of supply), Alameda system (approximately 30 percent of supply), Peninsula system (approximately 10 percent of supply). Emergency supplies from Sunset wells system and from Lake Merced, within San Francisco.
- Treatment: Chlorination, copper sulfate for algae control in open reservoirs.

 Aeration of water from Calaveras Reservoir. Fluoridation authorized in November 1951.
- Raw-water storage: Storage reservoirs, total capacity 187,630,000,000 gal. Finished-water storage: Distribution reservoirs, total capacity 315,600,000 gal; elevated tanks, total capacity 2,780,000 gal.
- The Hetch Hetchy system includes the Tuolumne River impounded in Hetch Hetchy Reservoir, Eleanor Creek impounded in Lake Eleanor, and Cherry River. These waters are combined at Early Intake, 155 miles east of San Francisco, where they enter the aqueduct leading to San Francisco.
- Hetch Hetchy Reservoir has a storage capacity of 117, 300, 000, 000 gal, Lake Eleanor a storage capacity of 9,000,000,000 gal, while the present capacity of the aqueduct is about 92,000,000 gpd. Under construction (1951) is a dam on Cherry River which will create a new reservoir with a capacity of 86,000,000,000 gal. Also under construction is a second section of aqueduct across San Joaquin Valley which will increase the capacity of the aqueduct to 140,000,000 gpd.
- The Alameda sources lie on the east side of San Francisco Bay within the drainage area of Alameda Creek. The chief source is Calaveras Reservoir, which impounds Calaveras Creek and Arroyo Hondo, and water diverted from upper Alameda Creek through a tunnel. Calaveras Reservoir has a storage capacity of 31,550,000,000 gal, and its water flows by gravity to enter the Hetch Hetchy aqueduct. During dry years water is also obtained from two underground sources: Sunol filter galleries on Alameda Creek and wells in the vicinity of Pleasanton. When these sources are used, the water is pumped into the Hetch Hetchy aqueduct near the Bay Crossing Division.
- The Peninsula system includes chiefly three reservoirs: Crystal Springs, Pilarcitos, and San Andres. These reservoirs catch and store the local runoff; also Crystal Springs is the terminal reservoir for the Hetch Hetchy aqueduct, which includes all of the Hetch Hetchy and Alameda sources. The storage capacity of each reservoir is as follows: Crystal Springs, 22,580,000,000 gal; San Andres, 6,190,000,000 gal; Pilarcitos, 1,010,000,000 gal. Water from Pilarcitos Reservoir is released to San Andres Reservoir. Water from Crystal Springs and San Andres Reservoirs is supplied to a number of distribution reservoirs throughout the city. Crystal Spring lines supply downtown, commercial, waterfront areas of the city, and peninsula communities as far south as San Carlos. San Andres lines furnish water to residential areas of San Francisco. Bay Crossing lines (Hetch Hetchy aqueduct) supply peninsula communities south of San Carlos and some communities in Alameda County.

SAN FRANCISCO--Continued

ANALYSES
(Analyses, in parts per million, by City of San Francisco)

	Hetch Hetchy Reservoir		Pilarcitos Reservoir		Pleasanton Wells
Silica (SiO ₂)	3.8	5.0	3.7	14	11
Iron (Fe)	.02	.02	.02	.03	.02
Manganese (Mn)	0.02	0.02	0.02	0	
Calcium (Ca)	1.1	25	15	52	0 63
Magnesium (Mg)	1.4	8.8	5.1	14	29
Sodium (Na)	1.1	8.8	14	26	. 28
Potassium (K)	·	0.0		20	. 20
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	7	105	70	193	283
Sulfate (SO ₄)	1.6	17	6.5	63	47
Chloride (Cl)	1 1	1 1	20	21	30
Fluoride (F)	1.1	.1	.0	. 1	1
Nitrate (NO _s)	1 .1	.2	1	0	1.0
Dissolved solids	a ₁₃ .1	a ₁₂₄ .2	a ₉₉ .1	a 286	a 348
Hardness as CaCO ₃ :	1 10	127		200	0.10
Total	9	99	59	187	275
Noncarbonate) š	13	1	29	44
Color					
рН	6.4	7.7	7.5	7.9	8.0
Specific conductance		,,,			
(micromhos at 25 C.)	19.7	225	175	466	606
Turbidity					
Temperature (F.)					
	June 1949	June 1949	June 1949	1948	January 1949

	Crystal Springs	San Andres	Bay Crossing
	lines	lines	lines
Silica (SiO ₂)	7.5	7.0	3.0
Iron (Fe)		.01	.05
Manganese (Mn)		0	0
Calcium (Ca) ·····		14	7.5
Magnesium (Mg)		6. 2	3.4
Sodium (Na)	11	12	5.3
Potassium (K)			
Carbonate (CO ₃)	0	0	0.
Bicarbonate (HCO ₃)		71	34
Sulfate (SO ₄)		12	8.7
Chloride (Cl)		15	5
Fluoride (F)	.1	.0	.0
Nitrate (NO ₃)	.0	.1	.0
Dissolved solids	a 93	a ₁₀₂	a 50.
Hardness as CaCO ₃ :			
Total	54	58	33
Noncarbonate	1	2	5
Color			
рН	7.9	7.8	7.3
Specific conductance			
(micromhos at 25 C.)	152	170	85
Turbidity			
Temperature (F.)			
Date of collection	Apr. 17, 1951	Apr. 17, 1951	Aug. 18, 1950

^aSum of determined constituents.

SAN GABRIEL (Population, 20,343)

Ownership: San Gabriel County Water District; supplies about 15,000 people in San Gabriel and about 5,000 people outside the city limits. Total population supplied, about 20,000. California Water & Telephone Co.; supplies sections of San Gabriel, San Marino, and County Island No. 2 (north of San Marino). Total population supplied, about 21,000.

Source: San Gabriel County Water District, 5 wells (3, 4, 5, 6, 7) 437, 500, 340, 401, and 910 ft deep; yield reported to be 1,225, 1,332, 2,146, 1,991, and 2,034 gpm. California Water & Telephone Co., 8 wells ranging in depth from 300 to 785 ft; yield (capacity) reported to range from 900 to 2,100 gpm.

Treatment: None.

Storage: San Gabriel County Water District, 4,100,000 gal; California Water & Telephone Co., 7,490,000 gal,

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

		<u> </u>			
	Well 3	Well 4	Well 5	Well 6	Well 7
Silica (SiO ₂)	23	19	37	25	34
Iron (Fe)	.01	. 03			
Manganese (Mn)				l	
Calcium (Ca)	29	26	34	34	31
Magnesium (Mg)	3.7	3.9	8, 5	11	8. 9
Sodium (Na)	30	29	25	25	33
Potassium (K)		3.0	3.0	2.0	
Carbonate (CO ₃)	!				
Bicarbonate (HCO ₃)	132	130	158	149	134
Sulfate (SO ₄)	15	27	9.3	16	33
Chloride (Cl)	10	9.0	12	16	15
Fluoride (F)	1.1	1.0	. 8	. 6	.9
Nitrate (NO ₃)	12	7.1	16	20	20
Dissolved solids	a ₁₈₉	a ₁₈₉	a 224	a 223	a 242
Hardness as CaCO ₃ :			1		İ
Total	87	82	121	128	114
Noncarbonate	0	0	0	6	4
Color					
рН	8.8	9.0	8. 2	8. 2	8.4
Specific conductance	0.0	5.0	0.2	0.2	0. 1
(micromhos at 25 C.)	275	277	319	343	331
Turbidity	6.0	1.5	0.9	1.3	1.1
Temperature (F.)			0.0	1.0	
Date of collection	Apr. 17,	Apr. 17,	Apr. 17,	Apr. 17,	Apr. 17.
	1951	1951	1951	1951	1951
Depth (feet)	437	500	340	401	910
Diameter (inches)	18	26	20	20	20
Date drilled	1931	1928	1915	1942	1947
Percent of supply					
	A				

a Sum of determined constituents.

SAN GABRIEL--Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 1917	Well 1923	Well 1925	Well 1947
Silica (SiO ₂)				
Iron (Fe)	. 27	.0	. 0	. 0
Manganese (Mn)	.0	l .ŏ	.0	.0
Calcium (Ca)	29	33	27	35
Magnesium (Mg)	7.4	8. 2	8.6	8. 5
Sodium (Na)	29	31	30	26
Potassium (K)				
Carbonate (CO ₃)	0	0	0	0
Bicarbonate (HCO ₃)	128	149	132	163
Sulfate (SO_4)	16	26	18	18
Chloride (Cl)	20	18	13	14
Fluoride (F)	1.0	.8	.9	.6
Nitrate (NO ₃)	5.3	2.0	6.4	1.9
Dissolved solids	a 171	a 192	a 169	a ₁₈₄
Hardness as CaCO ₃ :				
Total	104	115	102	122
Noncarbonate	0	0	0	0
Colon				
ColorpH	7.0	7-0		
Specific conductance	7.9	7.0	7.4	7.4
(micromhos at 25 C.)				
Turbidity				
Temperature (F.)				
Date of collection	June 11.	June 11,	June 11.	June 11,
Date of Confection	1952	1952	1952	1952
		1332	1302	1902
Depth (feet)	385	501	785	690
Diameter (inches)	18	18	26	20
Date drilled	1917	19 2 3	1925	1947
Percent of supply				

a Sum of determined constituents.

SAN JOSE (Population, 95, 280)

Ownership: San Jose Water Works (private); supplies also Los Gatos and about 65,300 people outside the city limits. Total population supplied, about 165,500. Source: 41 wells ranging in depth from 185 to 1,535 ft (60 percent of supply); Los Gatos and Saratoga Creeks (40 percent of supply).

Treatment: Wells: chlorination for some, others untreated. Creeks: chlorination, occasional use of chlorine dioxide and ammonia.

Rated capacity of treatment plant: --

Raw-water storage: Impounding reservoirs for streams, 2,485,000,000 gal.

Finished-water storage: Distribution reservoirs, 42,800,000 gal.

SAN JOSE -- Continued

ANALYSIS

(Analysis, in parts per million, by California Water Service Co.)

	Composite water a		Composite water ^a
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca)	21 . 04 . 00 42	Hardness as CaCO ₃ : Total Noncarbonate	194 8
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	21 29 1 0	Color pH Specific conductance (micromhos at	8. 2
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	222 41 16 . 1	25 C.) Turbidity Temperature (F.) Date of collection	475 1950
Nitrate (NO ₃) Dissolved solids	b 6.8 288		
Depth (feet)			
Date drilled Percent of supply	100		

^aMean for 1950.

SAN LEANDRO (Population, 27,542)

Ownership: East Bay Municipal Utility District. (See Oakland.)

SAN MATEO (Population, 41,782)

Ownership: California Water Service Co.

Source: Crystal Springs Reservoir (see San Francisco). Emergency supply from 10 wells, ranging in depth from 237 to 445 ft.

Treatment: Chlorination of water from Crystal Springs Reservoir by City of San Francisco; softening by lime-soda process, and chlorination of well water, when used.

Finished-water storage: 5,540,000 gal.

SANTA ANA

(Population, 45, 533; Oct. 23, 1952, 52, 355)

Ownership: Municipal.

Source: Colorado River distributed by the Metropolitan Water District of Southern California, 83 percent of supply, 89 percent of supply in 1952. (See Los Angeles.) Six wells (7,12 to 16) 960, 466, 960, 978, 1,140, and 1,050 ft deep, 17 percent of supply.

Treatment: Chlorination of well water; Colorado River water treated by Metropolitan Water District of Southern California. (See Los Angeles.)

Raw-water storage: --

Finished-water storage: 2,060,000 gal.

b Sum of determined constituents.

SANTA ANA -- Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

				
	Well 13	Well 14	Well 15	Well 16
Silica (SiO ₂)	18	16	18	15
Iron (Fe)	. 05	.07	.00	.00
Manganese (Mn)	.00	.00	.00	.00
Calcium (Ca)		63	50	67
Magnesium (Mg)	18	16	19	20
Sodium (Na)	45	43	43	43
Potassium (K)	1.9	2.3	1.7	1.3
Carbonate (CO ₃)				
Bicarbonate (HCO ₃)	204	230	207	208
Sulfate (SO_4)	93	74	90	83
Chloride (Cl)	39	54	35	53
Fluoride (F)	.3	.5	.3	.4
Nitrate (NO ₃)	16	12	4.4	21
Dissolved solids	a ₃₈₃	a ₃₉₄	a 364	a ₄₀₆
Hardness as CaCO _s :				
Total	203	225	205	250
Noncarbonate	36	36	35	79
Color				
рН	7.5	7.4	7.5	7.5
Specific conductance				
(micromhos at 25 C.)	645	708	625	685
Turbidity	< 1	< 1	< 1	< 1
Temperature (F.)				
Date of collection	Sept. 25.	Sept. 25,	Sept. 26,	Sept. 25,
	1951	1951	1951	1951
Depth (feet)	960	978	1,140	1,050
Diameter (inches)		20-16	26-16	20-12
Date drilled		1927	1929	1932
Percent of supply				

a Sum of determined constituents.

SANTA BARBARA (Population, 44, 913)

Ownership: Municipal; supplies also about 400 people outside the city limits. Total population supplied, about 45,300.

Source: Santa Inez River impounded in Gibraltar Reservoir, 60 percent of supply; 9 wells ranging in depth from 473 to 946 ft, 40 percent of supply. The yield of the wells is reported to range from 250 to 800 gpm. Auxiliary supply, 5 wells. There is an emergency connection with a private water company.

Treatment: Santa Inez River water: prechlorination, lime-soda softening, recarbonation, coagulation with alum, rapid sand filtration, and postchlorination. Well water: chlorination.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: Gioraltar Reservoir, approximately 4,700,000,000 gal.

Finished-water storage: Reservoirs, 64,000,000 gal.

Santa Inez River is supplemented when available by water from Tecolote Tunnel. When water from this source is used no softening is done. Sheffield Reservoir serves to distribute both Santa Inez River and Tecolote Tunnel water.

CALIFORNIA

SANTA BARBARA--Continued ANALYSES

(Analyses, in parts per million, by Pomeroy & Associates, Pasadena, Calif.)

De La

De La

	1				De I	Ĺa	Ι	De La
	1	Yanonali		Soledad	Guer	ra	G	uerra
	1	Well 1		Well 1	Wel	1	1	Well 3
Silica (SiO ₂)		32		32		38		28
Iron (Fe)			1	.0		. Ó		.0
Manganese (Mn)		_	-					
Calcium (Ca)		70		88	1	.03		81
Magnesium (Mg)		23		24	-	36		23
Sodium (Na)		53		75		54		42
Potassium (K)		1.	7	2		2.0		1.4
Carbonate (CO ₃)			٠ ا					
Bicarbonate (HCO ₃)		251	- 1	301	9	49		252
Sulfate (SO ₄) ······		134	l	135		.06		125
Chloride (Cl)		27		65		31		30
Fluoride (F)		٠	4	.3	-	.4		.3
Nitrate (NO ₃)			_	2		40		4
Dissolved solids		a ₄₆₅	١	a 572	a	33		a ₄₅₉
Hardness as CaCO ₃ :	•••••	100		0.2	,	,00		100
Total	į.	26 8		319	4	108		295
Noncarbonate		64		72		201		90
Notical bollate	********					.01		
Color		_	_					
pH		6.	9	7.2		6.7		7.0
Specific conductance		-	-					
(micromhos at 25 C		-	_ 1					
Turbidity								
Temperature (F.)		_	_					
Date of collection		Aug. 2	9.	Aug. 29,	Aug	. 29,	ر ا	Aug. 29,
Date of concerion		1951	٠,	1951		51		1951
- 12 /a 1)								
Depth (feet)		94		635		529		69 8
Diameter (inches)		_	4	14		14		14
Date drilled		195	0	1948		1948		1948
Percent of supply	•••••		_					
			1					
Ī	Finished	Tecolote				Finis	hed	Tecolote
	water b	Tunnel				wate	er b	Tunnel
Gilian (G:O.)		 	7.7	andross as C	-00 .			
Silica (SiO ₂)	24	28	"	ardness as C				
Iron (Fe)				Total		2	220	52
Manganese (Mn)				Noncarbonat	e		42	0
Calcium (Ca)	46	14	_					

	water D	Tunnel		water D	Tunnel
Silica (SiO ₂)	24	28	Hardness as CaCO ₃ :	-	
Iron (Fe)			Total	220	52
Manganese (Mn)			Noncarbonate	42	0
Calcium (Ca)	46	14			
Magnesium (Mg)	25	4.0	Color		
Sodium (Na)	99	117	pH	7.6	8.2
Potassium (K)	2.4	6.7	Specific conductance		
Carbonate (CO ₃)	~-		(micromhos at		
Bicarbonate (HCO ₃)	214	236	25 C.)		
Sulfate (SO ₄)	224	98	Turbidity		
Chloride (Cl)		11	Temperature (F.)		
Fluoride (F)		.8	Date of collection	Aug. 6,	Aug. 6,
Nitrate (NO ₃)		1.2		1951	1951
Dissolved solids	a 547	a 397			

a Sum of determined constituents.

b Sheffield Reservoir.

SANTA CRUZ (Population, 21,970)

Ownership: Municipal; supplies also about 11,000 people outside the city limits. Total population supplied, about 33,000.

Source: Coastal streams: Laguna Creek, Majors Creek, and Liddell Creek (57 percent of supply); San Lorenzo River (39 percent of supply); 3 wells each 100 ft deep (4 percent of supply).

Treatment: San Lorenzo River: prechlorination, activated carbon, pressure filtration, and postchlorination. Coastal streams: chlorination. Wells: chlorination, and addition of Calgon for stabilization.

Rated capacity of treatment plant: 6, 750, 000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoirs and tanks, 45,800,000 gal.

Water from the coastal streams flows by gravity to Santa Cruz. San Lorenzo River water is first treated, then pumped to the system.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	San Lorenzo River (raw water)	San Lorenzo River (finished water)	Bay Street Reservoir ^a
Silica (SiO ₂)		·	
Iron (Fe)	.1		
Manganese (Mn)	.0		
Calcium (Ca) ······		37	55
Magnesium (Mg)		6.8	5.1
Sodium (Na)	22	20	12
Potassium (K)		20	
Carbonate (CO ₃)		0	0
		126	177
Bicarbonate (HCO ₃)	56	26	24
Sulfate (SO ₄)	90	24	12
Chloride (Cl)	20	1	-
Fluoride (F)	.0	.2	.0
Nitrate (NO ₃)	1.5	0.0	.9
Dissolved solids	b 198	202	220
Hardness as CaCO ₃ :		400	400
Total	128	123	160
Noncarbonate	37	20	15
2)			
Color			
рН	7.6	7.9	7.6
Specific conductance		0.45	0.70
(micromhos at 25 C.)		347	370
Turbidity		< 1.0	< 1.0
Temperature (F.)			
Date of collection	Jan. 30, 1951	Oct. 16, 1951	Oct. 16, 1951

^a Coastal streams (finished water).

b Sum of determined constituents.

SANTA MONICA (Population, 71,595)

Ownership: Municipal.

Source: Colorado River distributed by the Metropolitan Water District of Southern California, 91 percent of supply; 95 percent in 1952 (see Los Angeles); 8 wells ranging in depth from 250 to 468 ft, 9 percent of supply. The reported yield of the wells is from 500 to 1,750 gpm. Emergency supply from Southern California Water Co.

Treatment: Colorado River water is softened and filtered by the Metropolitan Water District of Southern California. The well water is not treated.

Raw-water storage: --

Finished-water storage: 20,000,000 gal.

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	Well 1	Well 2		Well 1	Well 2
Silica (SiO ₂)	14		Hardness as CaCO ₃ :		
Iron (Fe)		.0	Total	291	295
Manganese (Mn)	. 00	.0	Noncarbonate	109	136
Calcium (Ca)	64	66			
Magnesium (Mg)		33	Color		
Sodium (Na)		44	рН	7.0	7.1
Potassium (K)	1.3		Specific conductance]	
Carbonate (CO ₂)		0	(micromhos at		
Bicarbonate (HCO _s)	222	201	25 C.)	725	
Sulfate (SO ₄)	119	138	Turbidity	< 1	
Chloride (Cl)	5 3	42	Temperature (F.)		
Fluoride (F)	. 3	. 4	Date of collection	Sept. 25,	Sept. 25,
Nitrate (NO ₂)	20	2.4		1951	1951
Dissolved solids	485	493			
Depth (feet)				250	250
Diameter (inches)				16	16
Date drilled					1940
				1920	

SANTA ROSA (Population, 17,902)

Ownership: Municipal; supplies also about 12,000 people outside the city limits. Total population supplied, about 30,000.

Source: 7 wells (2 to 6, Peters Springs well, and Ralphine well) 900, 300, 1,000, 290, 915, 139, and 846 ft deep, 67 percent of supply; Santa Rosa Creek and MacRae Springs, 33 percent of supply. The yield of the wells is reported to be 380, 325, 950, 250, 1,500, 575, and 450 gpm. Water from Santa Rosa Creek and MacRae Springs is stored in Lake Ralphine. Water from Peters Springs and Ralphine wells is pumped into Lake Ralphine during the summer months.

Treatment: Wells 2 to 6: aeration and polyphosphate (Calgon) for iron and manganese control, chlorination, and dechlorination by sulfur dioxide. Lake Ralphine: chlorination after long storage.

Rated capacity of treatment plant: 6,500,000 gpd. Raw-water storage: Lake Ralphine, 135,000,000 gal. Finished-water storage: Reservoirs, 2,800,000 gal.

SANTA ROSA--Continued

(Analyses, in parts per million, by Brown and Caldwell, San Francisco)

		,			
	Well 4	Well 6	Peters Springs Well	Lake Ralphine	Finished water (city tap)
Silica (SiO ₂)	93	89	95	38	84
Iron (Fe)	.33	. 27	. 33	. 52	. 27
Manganese (Mn)	.09	.07	, 10	.03	.18
Calcium (Ca)	28	29	34	22	30
Magnesium (Mg)	18	18	21	19	18
Sodium (Na)	1				
Potassium (K)	} 59	67	64	25	58
Carbonate (CO ₂)	0	0	0	14	0
Bicarbonate (HCO ₃)	285	290	346	168	280
Sulfate (SO ₄)	.9	9.9	2.9	7.0	8.8
Chloride (Cl)	27	2 8	16	11	25
Fluoride (F)					
Nitrate (NO ₃)	.0	7.0	1.0	3.1	1.5
Dissolved solids	366	391	405	222	364
Hardness as CaCO ₃ :					
Total	144	147	171	133	149
Noncarbonate	0	0	0	0	00
Color	0		0	5	
pH	8.0	7.4	8.1	8.4	7.5
Specific conductance	""	,,,			,,,,
(micromhos at 25 C.)	550	479	610	334	486
Turbidity	2		0	7	
Temperature (F.)					
Date of collection	Jan. 19,	Aug. 31,	Jan. 22,	Feb. 10,	Sept. 19,
_	1948	1950	1948	1949	1950
Depth (feet)	1,000	915	139		
Diameter (inches)	16-10	16	8		
Date drilled	1940	1950	1923	1	
Percent of supply					
	L				·

SOUTH GATE (Population, 51, 116)

Ownership: Municipal.

Source: 17 wells ranging in depth from 551 to 1,600 ft. The reported yield of the individual wells is from 400 to 1,900 gpm. There are emergency cross-connections with the Huntington Park and Walnut Park systems.

Treatment: None.

Storage: 1,300,000 gal.

Analyses of samples from the other wells show that they furnish water of about the same chemical composition as those for which analyses are given.

SOUTH GATE -- Continued

ANALYSES

(Analyses, in parts per million, by Smith Emery Co., Los Angeles, Calif.)

					
	Well 5	Well 15	Well 17	Well 18	Well 20
Silica (SiO ₂)	16	14	13	12	14
Iron (Fe)					
Manganese (Mn)					
Calcium (Ca)	55	68	60	63	62
Magnesium (Mg)	8.9	18	18	12	14
Sodium (Na)	47	46	46	29	34
Potassium (K)					
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO _s)	213	238	244	238	219
Sulfate (SO ₄)	59	103	64	37	73
Chloride (Cl)	28	32	41	26	23
Fluoride (F)					
Nitrate (NO ₂)					
Dissolved solids	a ₃₁₉	a ₃₉₈	a ₃₆₂	a 296	a ₃₂₈
Hardness as CaCO ₃ :		İ		İ	
Total	174	246	225	208	214
Noncarbonate	0	48	24	12	32
Color					
pH	7.4	7.6	7.8	7.5	7.8
Specific conductance					
(micromhos at 25 C.)	500	600	570	450	520
Turbidity					
Temperature (F.)					
Date of collection	Nov. 2,	Nov. 2,	Nov. 2,	Nov. 2,	Nov. 2,
	1950	1950	1950	1950	1950
Depth (feet)	1000	700	551	792	1,400
Diameter (inches)	12	12	16	18	18
Date drilled	1923		1931	1945	1949
Percent of supply					

^a Sum of determined constituents.

SOUTH PASADENA (Population, 16,935)

Ownership: Municipal.

Source: 6 wells (Wilson 1 to 3, Graves 1 and 2, and Orange Grove) 500, 525, 984, 500, 738, and 232 ft deep, respectively; yield reported to be 900, 1,030, 3,000, 900, 3,000, and 300 gpm. Emergency supply from Pasadena. (See Pasadena.) Treatment: None.

Storage: Reservoirs and tanks, 10, 200, 000 gal.

SOUTH PASADENA -- Continued

ANALYSES

(Analyses, in parts per million, by California State Dept. of Public Health)

	,			}	
	Wilson well 1	Wilson well 2	Wilson well 3	Graves well 1	Graves well 2
Silica (SiO ₂)	32	32	32	28	33
Iron (Fe)	. 03	. 04	. 05	. 02	
Manganese (Mn)					
Calcium (Ca)	40	39	38	48	42
Magnesium (Mg)	10	9.3	11	11	10
Sodium (Na)	29	28	29	25	24
Potassium (K)	3.2	2.4	3.0		3.5
Carbonate (CO ₂)					
Bicarbonate (HCO ₃)	136	173	161	151	149
Sulfate (SO ₄)	27	21	22	18	21
Chloride (Cl)	20	18	17	36	26
Fluoride (F)	.5	.5	.6	. 5	.4
Nitrate (NO ₃)	55	18	2 8	23	9.7
Dissolved solids	300	264	270	292	268
Hardness as CaCO ₂ :				1	
Total	141	136	141	166	146
Noncarbonate	29	0	9	42	24
Color	0	0		0	0
рН	7.8	8. 1	7.9	8. 1	8. 2
Specific conductance		02		1	
(micromhos at 25 C.)	400	367	380	416	370
Turbidity	1.0	1.5	1.7	0.0	0.0
Temperature (F.)					i
Date of collection	Apr. 24,	Apr. 24.	Apr. 24,	Apr. 19,	Apr. 19,
	1951	1951	1951	1951	1951
Depth (feet)	500	525	984	500	738
Diameter (inches)	16	26	24	16	20
Date drilled	1910	1924	1950	a 1890	1949
Percent of supply	1910	1944	1000	- 1000	
or puppe,					L

^a Drilled about 1890.

SOUTH SAN FRANCISCO (Population, 19,351)

Ownership: California Water Service Co.; supplies also about 175 people outside the city limits. Total population supplied, about 19,500.

Source: Crystal Springs Reservoir, 52 percent of supply (see San Francisco); 9 wells (1-02, 1-04, 1-09, 1-14 to 1-19) 196, 271, 276, 547, 539, 589, 478, 575, and 528 ft deep; yield reported to be 140, 160, 140, 150, 475, 300, 400, 70, and 70 gpm. The wells furnish 48 percent of the supply.

Treatment: Chlorination. Raw-water storage: --

Finished-water storage: Reservoirs and tanks, 4,640,000 gal.

SOUTH SAN FRANCISCO--Continued ANALYSIS

(Analysis, in parts per million, by California Water Service Co., San Jose, Calif.)

	Composite sample (city tap)		Composite sample (city tap)
Silica (SiO ₂)	22 . 04 	Hardness as CaCO ₃ : Total Noncarbonate	128 20
Calcium (Ca)	16 21 42 	Color	 8. 3
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	2 126 37 49	Turbidity Temperature (F.) Date of collection	448 0 1950
Nitrate (NO ₃) Dissolved solids	6.8 a 257		

a Sum of determined constituents.

STOCKTON (Population, 70,853)

Ownership: California Water Service Co.; supplies also about 26,000 people outside the city limits. Total population supplied, about 96,900.

Source: 37 wells ranging in depth from 198 to 1,050 ft.

Treatment: 7 wells at Station 1: aeration, chlorination, and Calgon. Water from all but 5 wells is chlorinated.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoirs and tanks, 4,830,000 gal.

ANALYSES

(Analyses, in parts per million, by California Water Service Co., San Jose, Calif.)

	Well 1-09	Well 18-01	Well 22-01	Range of Con- stituents ^a	Mean ^a
Silica (SiO ₃)	54	43	47	40 - 64	49
Iron (Fe)	. 08	. 04	.07	.0034	
Manganese (Mn)	. 14	.08	.14		
Calcium (Ca)	38	10	22	4.0 - 93	20
Magnesium (Mg)	20	4.9	5.9	2.9 - 52	10
Sodium (Na)	71	31	71	15 - 227	65
Potassium (K)		'			 _
Carbonate (CO ₃)					
Bicarbonate (HCO ₃)	160	118	163	115 - 219	164
Sulfate (SO ₄)	3.8	3.4	2.4	.5 - 12	4.0
Chloride (Cl)	134	6	67	6 - 410	63
Fluoride (F)					
Nitrate (NO ₃)	լ 6.8	1	ր .6	.0 - 14	2.6
Dissolved solids	b ₄₀₈	b 158	b 298	158 - 828	296
Hardness as CaCO _s :					
Total	176	44	78	22 - 446	91
Noncarbonate	46	0	0		0

a Based on 37 analyses (1 analysis from each well) 1951.

b Sum of determined constituents.

STOCKTON, Analyses,-Continued

_	,	,			
	Well 1-09	Well 18-01	Well 22-01	Range of Con- stituents ^a	Mean ^a
Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	7.8 715 Apr. 19, 1951	7.9 211 July 21, 1951	475 475 July 21, 1951	7.5 - 8.6 211 - 1595 1951	8.0 471 1951
Depth (feet) Diameter (inches) Date drilled Percent of supply	30	408 30-16 1947	420 30-16 1949		

a Based on 37 analyses (1 analysis from each well) 1951.

TORRANCE

(Population, 22, 241)

Ownership: Municipal; supplies also about 4, 200 people outside the city limits. Total population supplied, about 26, 400.

Source: 3 wells, 570, 540, and 492 ft deep (60 percent of supply); Colorado River distributed by the Metropolitan Water District of Southern California, 40 percent of supply; 58 percent in 1952. (See Los Angleles.) The yield of the wells is reported to be 1,350, 1,350, and 950 gpm.

Treatment: Well water is chlorinated. Colorado River water is softened and filtered by the Metropolitan Water District of Southern California.

Storage: 2,320,000 gal.

ANALYSES
(Analyses, in parts per million, by Montgomery & Pomeroy, Los Angeles, Calif.)

(Analyses, in parts per million, t	y wonigomery w	Funier by, Los	Aligeres, Carp.,
	Well 1	Well 2	Torrance District Well 1
Silica (SiO ₂)			24
Iron (Fe)		. 25	. 25
Manganese (Mn)			0
Calcium (Ca) ······	36	33	39
Magnesium (Mg)	15	14	14
Sodium (Na)	73	75	69
Potassium (K)	7.1	7.9	6.3
Carbonate (CO ₃)	0		0
Bicarbonate (HCO ₃)	267	272	242
Sulfate (SO ₄)	.0	.0	7.3
Chloride (Cl)		63	78
Fluoride (F)			.0
Nitrate (NO ₃)			
Dissolved solids		a 327	a ₃₅₇
Hardness as CaCO ₃ :	001	021	
Total	150	143	154
Noncarbonate		0	0
Color			
рН			7.7
Specific conductance			,,,,
(micromhos at 25 C.)			
Turbidity		0	0
Temperature (F.)			
Date of collection		Feb. 15, 1947	Nov. 12, 1948

^a Sum of determined constituents.

TORRANCE, Analyses -- Continued

	Well 1	Well 2	Torrance District Well 1	
Depth (feet)	5 7 0	54 0	492	
Diameter (inches)	16	16	14	
Date drilled	1935	1935	1936	
Percent of supply				

VALLEJO (Population, 26,038)

Ownership: Municipal; supplies also about 44,350 people outside the city limits. Total population supplied, about 70,400.

Source: 61 percent of the supply is obtained from East Bay Municipal Utility District (see Oakland). Surface waters impounded in reservoirs: Gordon Valley Creek (26 percent of supply), Green Valley Creek (13 percent of supply).

Treatment: Water from East Bay Municipal Utility District treated by the District (see Oakland). Local supply: prechlorination, coagulation with alum, sedimentation, activated carbon, postchlorination, and lime for pH control.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: Reservoirs, 6,053,600,000 gal.

Finished-water storage: 49,000,000 gal.

ANALYSES

(Analyses, in parts per million, by City of Vallejo, Calif.)

(Milary 5 e 5	, in parts	per mir.	ion, by Only of Variejo,	Ourir.,	
	Green Valley Creek	Gordon Valley Creek		Green Valley Creek	Gordon Valley Creek ^a
Silica (SiO ₂) Iron (Fe)	.0	5. 0 . 0	Hardness as CaCO ₃ : Total	29	170
Manganese (Mn) Calcium (Ca)			Noncarbonate	0	22
Magnesium (Mg)	3.0		Color	10	5
Sodium (Na) Potassium (K)		27	pH Specific conductance	7.7	7.9
Carbonate (CO ₃)		0	(micromhos at		
Bicarbonate (HCO ₃)	37	183	25 C.)		
Sulfate (SO ₄)	10	65	Turbidity	10	25
Chloride (Cl)		11	Temperature (F.)		
Fluoride (F)		.0	Date of collection	June	June
Nitrate (NO ₃)		.0		1950	1950
Dissolved solids	90	263		1	

Regular determinations at treatment plant, 1950

	as	kalin s CaC (ppm)	O _s	ΡΗ		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water				7.0 7.4	8.2 7.4	5. 6 7. 4	80 80	110 110	60 60	20 2	400 5	10 0

a Raw water.

VENTURA (Population, 16,534)

Ownership: Municipal; supplies also about 4,000 people outside the city limits.

Total population supplied, about 20,500.

Source: 6 wells: 3 wells (Pierpont 1 and 2, and Chrisman 2) within the city, 1,400, 1,574, and 1,632 ft deep. The yield of the wells is reported to be 1,300, 2,200, and 2,200 gpm; 3 wells (Casitas 1, Nye 1, and Nye 2) near the Ventura River, 75, 64, and 70 ft deep. The yield of these wells is reported to be 750, 600, and 400 gpm. Auxiliary supply from the Ventura River when there is a flow of water with low turbidity. This source is usually a very small part of the total. Emergency supplies from Mound Water Co., Saticoy Water Co., and Montalvo Mutual Water Co.

Treatment: Wells: aeration and zeolite softening. River: Zeolite softening and dual chlorination.

Rated capacity of treatment plant: 11,000,000 gpd.

Raw-water storage: 11,000,000 gal.

Finished-water storage: 16,000,000 gal.

ANALYSES

(Analyses, in parts per million, by Pomeroy and Associates, Pasadena, Calif.)

	Pierpont Well 2	Chrisman Well 2	Casitas Well 1
Silica (SiO ₂)	42	39	16
Iron (Fe)	1.2	1.5	.2
Manganese (Mn)			
Calcium (Ca) ······		165	109
Magnesium (Mg)	47	47	47
Sodium (Na)	155	147	46
Potassium (K)	6.1	6.0	2.0
Carbonate (CO ₃)			
Bicarbonate (HCO ₃)		371	289
Sulfate (SO ₄)		500	264
Chloride (Cl)		71	48
Fluoride (F)		.3	
Nitrate (NO ₃)			
Dissolved solids	a _{1,160}	a _{1,160}	a ₆₇₅
Hardness as CaCO ₃ :		·	
Total		606	467
Noncarbonate	269	301	22 8
Color			
Color			
pH	7.4	7.5	7.2
Specific conductance			
(micromhos at 25 C.)			
Turbidity Temperature (F.)			
Date of collection		Aug. 28, 1951	Sept. 30, 1949
		T	
Depth (feet)	1,574	1,632	75
Diameter (inches)		16-12	18
Date drilled		M ar. 1948	1924
Percent of supply			

^aSum of determined constituents.

WHITTIER

(Population, 23,820; special census 1952, 29,265)

Ownership: Municipal.

Source: 8 wells (1, 5, 7, 8, 9, 10, 11, 12) 434, 680, 1,000, 302, 664, 808, 837, and 656 ft deep; yield reported to be 800, 1,800, 2,200, 2,800, 3,750, 2,500,

4, 200, and 1, 400 gpm.

Treatment: None.

Storage: Reservoirs, 18,400,000 gal.

ANALYSES

(Analyses, in parts per	million, by	Truesdail	Laboratori	es Inc., Lo	s Angeles)
	Well 5	Well 7	Well 8	Well 9	Well 11
Silica (SiO ₂)	25	14	18	16	20
Iron (Fe)					
Manganese (Mn)					
Calcium (Ca)	83	61	63	44	33
Magnesium (Mg)	16	13	9.5	6.0	3.8
Sodium (Na)	34	20	13	12	22
Potassium (K)					
Carbonate (CO ₂)	0	0	0	0	0
Bicarbonate (HCO ₃)	257	219	206	159	144
Sulfate (SO ₄)	101	40	24	1.9	.0
Chloride (Cl)	18	17	18	20	15
Fluoride (F)					
Nitrate (NO _s)	1 1 1	4.5	8.2	0	2.2
Dissolved solids	a 405	a 277	a 255	a ₁₇₈	a 167
Hardness as CaCO ₃ :					
Total	275	205	196	134	97
Noncarbonate	62	26	27	4	0
Color					
рН	7.2	7.2	8.0	7.9	8.1
Specific conductance	"-				
(micromhos at 25 C.)	672	453	406	291	297
Turbidity					
Temperature (F.)					
Date of collection	May 21,	Jan. 18,	Jan. 18,	Jan. 18,	Jan. 18,
Date of Collection IIIIII	1951	1951	1951	1951	1951
Depth (feet)	680	1,000	302	664	837
Diameter (inches)	26-18	18-14	24		20
Date drilled	1922	1930	1931	1933	1948
Percent of supply					

^aSum of determined constituents.

AURORA, COLORADO (Population, 11, 421)

Ownership: Supplied by Denver; also supplies 50 people outside the city limits. Total population supplied, 11,471. (See Denver.)

BOULDER (Population, 19, 999)

Ownership: Municipal; also supplies about 5,000 people outside the city limits,

and Public Service electric plant. Total population served, about 25,000. Source: A series of nine natural lakes, some of which are enlarged by dams, fed by melting Arapahoe Glacier, approximately 18 miles west of the city. The water flows from Silver Lake, the lowest reservoir in the mountain system, to foot of Arapahoe Falls; thence it is conveyed by pipeline to Lakewood Reservoir, the control reservoir for the city, 13 miles away; from this reservoir the water is conveyed to two distribution reservoirs at the city limits.

Treatment: None.

Storage: 1,666,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	City tap		City tap
Silica (SiO ₂)	6.2	Hardness as CaCO _s :	
Iron (Fe)	. 03	Total	11
Manganese (Mn)	.00	Noncarbonate	.0
Calcium (Ca)	4.0		
Magnesium (Mg)	. 1	Color	29
Sodium (Na)	1.0	pH	6.8
Potassium (K)	. 3	Specific conductance	
Carbonate (CO _s)	Ô	(micromhos at	
Bicarbonate (HCO ₃)	14	25 C.)	31.7
Sulfate (SO ₄)	. 5	Turbidity	0.8
Chloride (Cl)	. 5	Temperature (F.)	65
Fluoride (F)	.1	Date of collection	May 23,
Nitrate (NO_3)	1.0		1951
Dissolved solids	26		

COLORADO SPRINGS (Population, 45, 472)

Ownership: Municipal; also supplies 5,000 people outside the city limits; 5,000 to 25,000 at Camp Carson and Peterson Field. Total population supplied, 55,000 to 75,000.

Source: Streams and impounding reservoirs above 9,000 ft in elevation, on north slopes of Pikes Peak; Fountain Creek, auxiliary supply. Fountain Creek water is blended with the regular supply as needed, depending on the amount of snowfall on the watershed of the regular supply.

Treatment: Chlorination and ammoniation for the regular supply; coagulation with alum and lime, copper sulfate, sedimentation, rapid sand filtration, and chlorination for the auxiliary supply.

Rated capacity of treatment plant: 25,000,000 gpd; auxiliary supply, 5,000,000

Raw-water storage: Reservoirs, 4,830,000,000 gal.

Finished-water storage: 3,000,000 gal.

The water flows by gravity to the distribution system. A part of the supply is diverted for the generation of electric power. The supply from Fountain Creek is pumped as needed,

COLORADO SPRINGS--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Regular supply Finished water	Raw water ^a	Finished water a
Silica (SiO ₂)	8.4	15	14
Iron (Fe)	.4	. 02	. 01
Manganese (Mn)		.00	.00
Calcium (Ca)	6.0	46	50
Magnesium (Mg)		9. 5	9. 1
Sodium (Na)	١	<i>f</i> 26	26
Potassium (K)	5.1	4.2	4.0
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	18	205	202
Sulfate (SO ₄)	4.0	20	26
Chloride (Cl)		15	17
Fluoride (F):		3.0	3.0
Nitrate (NO ₃)	. 9	2.4	2. 1
Dissolved solids	33	244	255
Hardness as CaCO _s :			
Total	19	154	162
Noncarbonate	4	0	0
Color		3	1
рН	7.4	8.1	8:3
Specific conductance			
(micromhos at 25 C.)		411	426
Turbidity		4	0.8
Temperature (F.) ······		56	60
Date of collection	Apr. 12, 1950	May 25, 1951	May 25, 1951

a Fountain Creek, auxiliary supply.

DENVER (Population, 415, 786)

Ownership: Municipal; supplies also Aurora, Edgewater, Englewood, Fort Logan, Mountain View, Sheridan, and other communities in the metropolitan area. Total population supplied outside the city limits, about 77,000. Total population supplied, about 493,000.

Source: South Platte River (35 percent) and tributaries, Bear and Cherry Creeks, and infiltration galleries along Cherry Creek (3 percent); Fraser River and tributaries (19 percent); storage, South Platte and Fraser Rivers (43 percent).

Treatment: Kassler plant at Waterton (South Platte River water): coagulation with alum when necessary, slow sand filtration, and chloramine. Marston Lake plant, south side (South Platte River water), Marston Lake plant, north side (South Platte River water), and Moffat plant (Fraser River water): coagulation with alum, or sodium aluminate and alum, or lime and alum, activated carbon when necessary for taste and odor control, rapid sand filtration, and chloramine. Infiltration galleries (Cherry Creek), chlorination only. Copper sulfate is applied to raw-water reservoirs directly supplying treatment plants, when necessary, for algae control.

Rated capacity of treatment plants: Kassler (slow sand filters), 30,000,000 gpd; Marston Lake (south side), 21,000,000 gpd; Marston Lake (north side), 64,000,000 gpd (anthracite filters); Moffat, 56,000,000 gpd; chlorinators (infiltration galleries), 6,000,000 gpd.

DENVER -- Continued

Raw-water storage: South Platte sources, storage and operating reservoirs, 69,915,000,000 gal; Moffat diversion sources, operating reservoirs, 3,503,000,000 gal; Soda Lakes (Bear Creek) and Long Lake (Moffat diversion), operating and storage reservoirs, 665,000,000 gal. Total raw water storage, 74,083,000,000 gal.

Finished-water storage: 121,000,000 gal.

South Platte River water is impounded or stored in Antero Reservoir, Eleven Mile Canyon Reservoir, Lake Cheesman, and Marston Lake. Bear Creek water is diverted near Morrison into Harriman Lake and Soda Lakes and thence to Marston Lake. Cherry Creek water is collected through the infiltration galleries. Fraser River water is brought from beyond the continental divide by the Moffat Tunnel, about 25 miles northwest of the city, into South Boulder Creek and from there by conduit into Ralston Creek Reservoir, a storage reservoir mainly for winter use (summer demands are supplied by direct diversion). Water from Ralston Creek Reservoir is brought by conduit to the Moffat treatment plant, $3\frac{1}{2}$ miles west of the city.

Under normal conditions water is drawn directly from the streams and storage is drawn upon only when the requirements are too great to be supplied by

direct withdrawal.

ANALYSES
(Analyses, in parts per million, by Denver Water Department)

(Milary Bed) III par to p	CI	2011.01 11440	- Sobartunor	
	South Plat	te River (finis	shed water)	Infiltration galleries
	Maximum	Minimum	Average	Cherry Cr.
Silica (SiO ₂)	7.4	4.5	6.5	30
Iron (Fe)				
Manganese (Mn)				
Calcium (Ca)	39	32	34	61
Magnesium (Mg)	14	12	13	9.5
Sodium (Na)	33	26	27	48
Potassium (K)				
Carbonate (CO ₃)				
Bicarbonate (HCO ₃)	122	102	112	202
Sulfate (SO_4)	56	49	52	83
Chloride (Cl)		32	40	22
Fluoride (F)		.8	. 9	. 6
Nitrate (NO ₃)	. 5	. 2	.4	14
Dissolved solids				
Hardness as CaCO ₃ :				
Total	156	129	139	192
Noncarbonate	55	46	46.	26
Color				
pH				
Specific conductance	AFE	401	400	
(micromhos at 25 C.)		401	423	
Turbidity				
Temperature (F.)	1950	1950	1050	June 4, 1951
Date of collection	1,950	1900	1930	June 4, 1931

Regular determinations at treatment plant, 1950 a

	as	kalini CaC (ppm)	O ₃	рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min	
Raw water Finished water		94 94	78 70	8.3 8.0	8. 6 8. 5	7. 9 7. 5	127 127	154 154	92 92	4.6 1.7	12 2. 8	2. 0 1. 0	

a Marston Lake, north side.

DENVER--Continued

Regular determinations at treatment plant, 1950

		lkalii s CaC (ppm	CO ₃	рН				rdnes CaC (ppm)	O ₃	Turbidity		
_	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water a Finished water a.		95 	90 	8.0 7.7	8.5 8.0		145 	150 	140	5. 9 1. 3	12 4.0	2.3 1.0
Raw water b Finished water b	93 85		6 8 66	7.6 7.7	8.1 8.0	7.4 7.0	147 133	169 171	102 88	13.6 1.0	28 1.0	4.0 1.0

a Marston Lake, south side.

ANALYSES (Analyses, in parts per million, by Denver Water Department)

	Fraser	River (finished	water)
	Maximum	Minimum	Average
Silica (SiO ₂)	8.0	7.0	7.5
Iron (Fe)			
Manganese (Mn)			
Calcium (Ca) ·····	21	11	14
Magnesium (Mg)	5. 1	1.8	2.9
Sodium (Na)	7. 2	2.7	4.7
Potassium (K)			
Carbonate (CO ₃)			
Bicarbonate (HCO ₃)	61	26	39
Sulfate (SO ₄)	36	19	24
Chloride (Cl)	1.0	.5	. 9
Fluoride (F)	. 2	.1	.1
Nitrate (NO ₃)	. 3	. 2	. 2
Dissolved solids			~-
Hardness as CaCO ₃ :		i	
Total	73	35	48
Noncarbonate	23	14	14
Color			
pH		[
Specific conductance			
(micromhos at 25 C.)	127	92	106
Turbidity		1	
Temperature (F.)			
Date of collection	1950	1950	1950
Date of Confection	1,000	1300	1000

Regular determinations at treatment plant, 1950

		lkalir s CaC (ppm	CO ₃	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		74 62	16 16	7.4 7.4		6. 5 7. 1	53 61	150 154	20 20	25 . 9	95 2. 5	11 .4

b Kassler slow-sand filters.

ENGLEWOOD (Population, 16,869)

Ownership: Supplied by Denver. (See Denver.)

FORT COLLINS (Population, 14, 937)

Ownership: Municipal; also supplies 4,000 people outside the city limits. Total population supplied, 18, 937.

Source: Cache La Poudre River. The treatment plant is located 16 miles northwest of Fort Collins, on the Cache La Poudre River.

Treatment: Sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 9,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 11,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

		3 7	<i>31</i>
	Finished water		Finished water
Silica (SiO ₂)	9. 1	Hardness as CaCO ₃ :	
Iron (Fe)	. 04	Total	34
Manganese (Mn)	.00	Noncarbonate	21
Calcium (Ca)	12		
Magnesium (Mg)	1.0	Color	22
Sodium (Na)	2.9	рН	6.8
Potassium (K)	. 6	Specific conductance	
Carbonate (CO _s)	0	(micromhos at	
Bicarbonate (HCO ₃)	16	25 C.)	94. 1
Sulfate (SO ₄)	25	Turbidity	3
Chloride (Cl)	2.0	Temperature (F.)	54
Fluoride (F)	. 1	Date of collection	May 23,
Nitrate (NO ₃)	. 8		1951
Dissolved solids	77		

Regular determinations at treatment plant, 1950

		•										
	Alkalinity as CaCO ₃ (ppm)		р Н			Hardness as CaCO ₃ (ppm)			Temperature			
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water Finished water		 35	 0	 7. 2	7.5	7. 0	22	30	20	 50	 60	 33

GRAND JUNCTION (Population, 14, 504)

Ownership: Municipal; supplies also about 3,000 people outside the city limits.

Total population supplied, about 17,500.

Source: Kahnah Creek (tributary to Gunnison River). Intake located about 27 miles southeast of Grand Junction.

Treatment: Coagulation with sodium aluminate and occasionally alum, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 8,500,000 gpd.

Raw-water storage: Reservoirs on Grand Mesa, approximately 520,000,000 gal. Finished-water storage: 23,000,000 gal.

GRAND JUNCTION--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Tap at City Hall		Tap at City Hall
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	20 . 08 . 00	Hardness as CaCO ₂ : Total Noncarbonate	8 4 0
Calcium (Ca)	22 7. 2 5. 4 3. 8	ColorpHSpecific conductance (micromhos at	10 7.8
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	110 9. 1 1. 9 . 3 . 6	25 C.)	180 30 Apr. 30, 1951

GREELEY (Population, 20, 354)

Ownership: Municipal; also supplies 6,000 people outside the city limits. Total population supplied, 26,354.

Source: Cache La Poudre River. The treatment plant is located approximately 40 miles northwest of Greeley. The auxiliary supply is taken from the Seaman Dam on the North Cache La Poudre River.

Treatment: Coagulation with alum, lime, charcoal, rapid sand and slow sand filtration, and chlorination.

Rated capacity of treatment plant: 12,000,000 gpd.

Raw-water storage: 3,314,000,000 gal. Finished-water storage: 22,500,000 gal.

The water from the Cache La Poudre River watershed is made up primarily from melted snow and the turbidity of the water is practically zero with the exception of about one month of the year during spring runoff.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(Milary BCB)	m par to	ber mini	on, by c. b. deologica	2 022 1037	
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	.00	8.5 .02 .00	Hardness as CaCO ₃ : Total Noncarbonate	40 0	48 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	4. 2	14 3.1 4.6 .9	ColorpHSpecific conductance	22 7. 3	7 7. 7
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	51 4.0	0 61 1.0 4.0	(micromhos at 25 C.)	99. 1 3	121 0. 4
Fluoride (F)	. 3 1. 3	.3 .4 80	Date of collection	May 23, 1951	May 22, 1951

•	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water				7 7			16 16		7 7	10 3	27	0

LONGMONT

(Population, 8.099)

Ownership: Municipal; also supplies about 2,000 people outside the city limits. Total population supplied, about 10,100.

Source: St. Vrain River.

Treatment: Slow sand filtration and chlorination. Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 9,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	9. 8 . 02 . 04		32 8
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	9. 0 2. 3 2. 7	Color	33 7. 1
Bicarbonate (HCO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 29 12 1.5 .2	(micromhos at 25 C.)	80.7 2 54 May 23, 1951
Dissolved solids	72		1901

PUEBLO

(Population, 63, 685)

Ownership: Municipal; the city is divided into two water districts, each with its own water system. District 1 supplies 30,000 people in the city; about 3,000 outside the city limits; 3,000 at the Pueblo Air Force Base and Interstate Gas Co. District 2 supplies 33,685 in the city; 8,000 outside city limits. The total population served by both districts, about 78,000.

Source: District 1, Arkansas River. Wells and transmountain diversion as auxiliary supply. The transmountain diversion is taken from the Colorado River basin and diverted to the eastern slope by what is known as Wurts Ditch which is located about 1 mile southwest of the top of Tennessee Pass. District 2, Arkansas River. The maximum allowable diversion from the Arkansas River is 25.5 second-feet. When the demand exceeds this quantity the auxiliary supply is drawn upon. Plant intakes for both districts are located about a quarter of a mile apart on the river.

Treatment: District 1, copper sulfate, coagulation with alum, sedimentation, activated carbon, rapid sand filtration, chlorination, and ammoniation. District 2, plain sedimentation, and chlorination.

Rated capacity of treatment plant: District 1, 25,000,000 gpd. District 2, no treatment plant.

Raw-water storage: District 1, 50,000,000 gal. District 2, 30,000,000 gal. Finished-water storage: District 1, 5,500,000 gal. District 2, 26,000,000 gal.

PUEBLO--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

()	P	P 4	on, by c. b. declogica		
	Raw water ^a	Finished water a		Raw water a	Finished water a
Silica (SiO ₂)	. 02 . 00	. 02	Hardness as CaCO ₃ : Total Noncarbonate	162 87	191 117
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	19 1, 3	50 16 25 1.7	ColorpHSpecific conductance	9 7. 8	7. 6
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	92 117	0 90 151 11	(micromhos at 25 C.)	410 70 63	491 .4
Fluoride (F)	. 1 3. 0	.1 4.2 329	Date of collection	May 24, 1951	May 24, 1951

Regular determinations at District 1 treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН		Hardness as CaCO ₃ (ppm)		Turbidity					
	Av	Max	Min	Αv	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water										436 1.8	3793 3.4	

a District 1.

TRINIDAD

(Population, 12, 204)

Ownership: Municipal; also supplies a considerable area outside the city limits. Total population supplied, about 20,000.

Source: North Fork Las Animas River, approximately 40 miles east of Trinidad, impounded in reservoirs.

Treatment: None. (Filtration plant under construction in 1951).

Raw-water storage: 4 reservoirs: North Lake 326,000,000 gal; Monument Lake, 489,000,000 gal; concrete reservoir, Madrid Lake, a regulating reservoir 7 miles east of the city, 70,000,000 gal; reservoir 3 miles from the city, 3,000,000 gal. Total storage, 890,000,000 gal.

Finished-water storage: --

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

(Allalysis, Ill par	ts per million	i, by U. S. Geological Surve	<u>'y)</u>
	Madrid Reservoir		Madrid Reservoir
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	7. 1 . 07	Hardness as CaCO ₃ : Total Noncarbonate	76 2
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	24 4.0 3.3 1.4	Color	5 7.9
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	91 6.7 1.2 .2 .6	25 C.)	160 June 6, 1951

ALAMEDA, IDAHO (Population, 4,694)

Ownership: Municipal; supplies also about 750 people outside the city limits. Total population supplied, about 5,500.

Source: 3 closely spaced wells, each 104 ft deep; yield reported to be 350, 500, and 1,350 gpm. Wells 1 and 2 are used during the entire year, while well 3 is used mostly during the summer months.

Treatment: None.

Storage: Reservoir, 250,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells 1, 2 (composite)		Wells 1, 2 (composite)
Silica (SiO ₂)	27 . 03 	Hardness as CaCO ₃ : Total Noncarbonate	35 4 67
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	86 34 48 9.2 0 351 60 75	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	7 7. 2 887 47 Mar. 29,
Nitrate (NO ₃) Dissolved solids	17 537		1951
Depth (feet)	104, 104 6, 10 about 1930		

BLACKFOOT (Population, 5, 180)

Ownership: Municipal; supplies also about 100 other people outside Blackfoot. Total population supplied, about 5,280.

Source: 2 wells, 179 and 182 ft deep. The yield of the wells is reported to be 600 and 800 gpm. Well 2 is used mostly during the summer months. Emergency supply from East Side Well, 110 ft deep.

Treatment: None.

Storage: 2 elevated tanks, 100,000 and 300,000 gal.

IDAHO 155

BLACKFOOT--Continued ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Well 1		Well 1
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	27 .02 86 26 19 5.1 0 356 45 15 .2	Hardness as CaCO ₃ : Total	322 30 5 7.5 642 Mar. 28, 1951
Depth (feet) Diameter (inches) Date drilled Percent of supply	179 15 1921 75		

BOISE (Population, 34, 393)

Ownership: Boise Water Corp.; supplies also about 25,000 people in suburban areas. Total population supplied, about 59,000.

Source: 14 wells from 300 to 600 ft deep, 80 percent of supply; dug well and infiltration galleries, 20 percent of supply.

Treatment: Chlorination of water from dug well and infiltration galleries; deep wells not treated.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoirs, 8,500,000 gal.

The water varies throughout the city as some of the wells are pumped directly into the mains. At night, to relieve pressure on the mains, water from the mains is pumped into reservoir 4.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

(Marysis, III par	rts per milition	i, by U. S. Geological Surve	<i>₹y)</i>
	Reservoir 4 (composite)		Reservoir 4 (composite)
Silica (SiO ₂)	25 1, 0	Hardness as CaCO ₃ : Total Noncarbonate	85 11
Calcium (Ca)	29 3. 1 12 1. 8	ColorpHSpecific conductance (micromhos at	10 7. 3
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 91 34 3.1 .3	Turbidity Temperature (F.) Date of collection	- 228 58 June 4, 1951
Dissolved solids	157		

BURLEY (Population, 5, 924)

Ownership: Municipal; supplies also about 200 people outside the city limits.

Total population supplied, about 6, 100.

Source: 2 wells (Pumphouse well and Hoggan well), 469 and 485 ft deep. The yield of the wells is reported to be 800 and 1, 200 gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: Elevated tank, 100,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(ZZZZZZY DCD)	Par to	PCI MILLI	on, by o. b. deologica	- Dua FOJ)			
	Pump- house well a	Hoggan well b		Pump- house well a	Hoggan well b		
Silica (SiO ₂)	59	58	Hardness as CaCO ₃ :				
Iron (Fe)	.01		Total	137	97		
Manganese (Mn)		. 1	Noncarbonate	15	0		
Calcium (Ca)	35	27					
Magnesium (Mg)	12	7.3	Color	5			
Sodium (Na)	32	10	pH	7.8	7.3		
Potassium (K)	7.7	} 46	Specific conductance				
Carbonate (CO.)	0		(micromhos at				
Bicarbonate (HCO.)	148	149	25 C.)	429			
Sulfate (SO ₄)	26	23	Turbidity				
Chloride (Cl)	45	33	Temperature (F.)	66			
Fluoride (F)		. 6	Date of collection	Mar. 27,	Jan. 8,		
Nitrate (NO ₃)	1.3	2.7		1951	1951		
Dissolved solids		291					
Depth (feet)	Depth (feet)						
Diameter (inches)							
Date drilled							
Percent of supply 90 10							

a Chlorinated.

CALDWELL (Population, 10, 487)

Ownership: Municipal; supplies also about 500 people outside the city limits. Total population supplied, about 11,000.

Source: 14 artesian wells (12 flowing), from 112 to 405 ft deep, 6 to 20 in. in diameter. The yield of the wells ranges from 427 to 1,200 gpm.

Treatment: None. Storage: 500,000 gal.

b Analyzed by State Dept. of Public Health, Boise, Idaho.

IDAHO 157

CALDWELL--Continued

ANALYSES

(Analyses, in parts per million, by State Dept. of Public Health, Boise, Idaho)

	Pump	Pump	Pump	Pump	City Hall
	House 1	House 2	House	House	
	(6 wells)	(5 wells)	за	4 b	Well C
Silica (SiO ₂)	33	33	32	32	28
Iron (Fe)	. 02	. 02	. 02	. 02	.02
Manganese (Mn)					
Calcium (Ca)	11	19	20	12	14
Magnesium (Mg)	2.6	2.5	3.1	2.5	1.4
Sodium (Na)	\ 14	38	37	12	∫ 41
Potassium (K)) 14	36	31	12	2.9
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	73	144	146	71	135
Sulfate (SO ₄)	5.4	9.4	9.5	4.6	12
Chloride (Cl)	2	7	8	2	6.9
Fluoride (F)	.4	.7	.7	.3	.7
Nitrate (NO ₃)	<1	<1	<1	<1	.3
Dissolved solids	106	182	186	94	173
Hardness as CaCO ₃ :				l	
Total	39	59	63	40	41
Noncarbonate	0	0	0	0	0
Color					6
pH	7.4	7.4	7.7	7.3	8.2
Specific conductance				•	
(micromhos at 25 C.)					254
Turbidity	0	0	0	0	
Temperature (F.)					68
Date of analysis	June 24,	June 24,	June 24,	June 24,	June 4,
	1949	1949	1949	1949	1951 d
Depth (feet)					
Diameter (inches)					
Date drilled					
Percent of supply	38	48	4	10	
	30	40	1 4	10	i

a College Heights well.

COEUR D'ALENE (Population, 12, 198)

Ownership: Idaho Water Co. (subsidiary of Boise Water Corp.).

Source: Coeur d'Alene Lake. Treatment: Chlorination.

Raw-water storage: Coeur d'Alene Lake. Finished-water storage: 1,750,000 gal.

c Analyzed by U. S. Geological Survey

b Cemetery well.
d Date of collection.

COEUR D'ALENE--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Finished water a	Finished water		Finished water ^a	Finished water
Silica (SiO ₂)		10	Hardness as CaCO ₃ :		
Iron (Fe)	0.37		Total	27	21
Manganese (Mn)			Noncarbonate	8	0
Calcium (Ca)	7) j			
Magnesium (Mg)	2.4		Color		
Sodium (Na)	1.3		рН	7.0	
Potassium (K)	1.3	1.8	Specific conductance		
Carbonate (CO _s)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	24	25	25 C.)		53
Sulfate (SO_4)	10	3.0	Turbidity	7	
Chloride (Cl)		.2	Temperature (F.)	39	51
Fluoride (F)		. 2	Date of collection	Apr. 29,	Nov. 2,
Nitrate (NO ₃)		. 4		1948	1949
Dissolved solids	58			1	

a Analyzed by State Dept. of Public Health, Boise, Idaho.

IDAHO FALLS (Population, 19,218)

Ownership: Municipal. Total population supplied, about 19,250.

Source: 4 wells (Big Pump 3 well, Boulevard well, I Street well, and Central Park well), 365, 365, 395, and 1,630 ft deep. Emergency supply from 21st Street well, 342 ft deep. The yield of these wells is reported to be 4,000, 3,400, 3,200, 3,000, and 4,000 gpm. During the winter months Big Pump 3 furnishes 90 percent and the Boulevard well, 10 percent of the supply. I Street well and Central Park well are used as needed during the summer months.

Treatment: None.

Storage: Elevated tank, 500,000 gal.

ANALYSES

(Analyses, in parts per million, by State Dept. of Public Health, Boise, Idaho)

	Big Pump 3 well ^a	Wells ^b (composite)	Central Park well
Silica (SiO ₂)	26		
Iron (Fe)	. 02	0. 2	0. 18
Manganese (Mn)			
Calcium (Ca) ·····	74	76	50
Magnesium (Mg)	23	22	16
Sodium (Na)	22	1.	0.4
Potassium (K)	4. 2	} 17	24
Carbonate (CO ₃)	0		12
Bicarbonate (HCO.)	312	305	178
Sulfate (SO ₄)	42	40	44
Chloride (Cl)	22	17	22
Fluoride (F)	. 2	. 2	.1
Nitrate (NO ₃)	6. 7		
Dissolved solids	3 66	376	272
Hardness as CaCO ₃ :			
Total	279	280	190
Noncarbonate	24	30	25

a Analyzed by U. S. Geological Survey.

b Big Pump 3, Boulevard, and I Street wells.

IDAHO	FALLS	AnalysesContinued

	Big Pump 3 well ^a	Wells b (composite)	Central Park well	
ColorpH	5 7.8	 7. 4	0 8.3	
Specific conductance		1.1	0.3	
(micromhos at 25 C.)	59 8			
Turbidity			2	
Temperature (F.)	56	50	51	
Date of collection	Mar. 28, 1951	May 12, 1945 c	Jan. 22, 1951	
Depth (feet)	365		1,630	
Diameter (inches)	22		20-16	
Date drilled	1937		1946-7	
Percent of supply				

a Analysis by U. S. Geological Survey.

JEROME (Population, 4,523)

Ownership: Jerome Water Co.; supplies also about 1,500 people outside the city

limits. Total population supplied, about 6,000.

Source: 3 wells 400, 379, and 391 ft deep; yield reported to be 225, 700, and 275

gpm.

Treatment: Chlorination.

Raw-water storage: Reservoir, 100,000 gal.

Finished-water storage: Elevated tank, 50,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water a		Finished water ^a
Silica (SiO ₂)	34 . 01	Hardness as CaCO ₃ : Total Noncarbonate	167 26
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	39 17 20 4.2 0 172 39 24 .5 1.6 256	Color	5 7.9 409 47 Mar. 27, 1951
Diameter (inches)			400, 391 8, 10 1909, 1910-11

^aComposite; wells 1 and 3.

b Big Pump 3, Boulevard, and I Street wells.

c Date of analysis.

KELLOGG (Population, 4,913)

Ownership: Idaho Water Co. (subsidiary of Boise Water Corp.); supplies also Osburn, Smelterville, Wardner, and about 225 people outside the city. Total population supplied, about 7,100.

Source: Big Creek (south and west forks) supplies Kellogg, Smelterville, and consumers outside the city limits. Wardner is supplied from Slaughterhouse Gulch, and Osburn from McFarren and Meyers Creeks. There is a closed connection with the Bunker Hill system for emergencies.

Treatment: Chlorination,

Raw-water storage: 4 tanks totaling 190,000 gal.

Finished-water storage: --

ANALYSIS

(Analysis, in parts per million, by State Dept. of Public Health, Boise, Idaho)

	Big Creek		Big Creek
Silica (SiO ₂)	7 . 05 . 0	Hardness as CaCO ₃ : Total Noncarbonate	28 2
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	6. 4 2. 9 1. 6 0	Color pH Specific conductance (micromhos at	7.1
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	32 3.5 1 .0 .0	25 C.) Turbidity Temperature (F.) Date of collection	 46 Oct. 23, 1950
Dissolved solids	47	<u> </u>	

LEWISTON (Population, 12, 985)

Ownership: Municipal.

Source: Clearwater River; auxiliary supply from 2 wells (1 and 2) 362 and 275 ft deep. The yield of the wells is reported to be 400 and 800 gpm. The wells are connected to the low-level distribution system and are used about 2 months of the year.

Treatment: Clearwater River: prechlorination and ammoniation, coagulation with alum and lime, fluoridation, sedimentation, rapid sand filtration, and adjustment of pH for corrosion control. Well water, chlorination only.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2 open brick reservoirs, 1,000,000 gal each; 2 open concrete reservoirs, combined capacity 7,600,000 gal; 1 concrete tank, 250,000 gal; and clear well, 125,000 gal.

IDAHO 161

LEWISTON--Continued ANALYSES

(Analyses, in parts per million, by State Dept. of Health, Boise, Idaho)

	Raw water a	Finished water b	Well 2
Silica (SiO ₂)		12	60
Iron (Fe)	0.05	. 03	. 06
Manganese (Mn)			.0
Calcium (Ca) ······		12	17
Magnesium (Mg)	1. 9	2.4	5.8
Sodium (Na)	.	<i>∫</i> 6.9	.
Potassium (K)	2.9	2.1	} 31
Carbonate (CO ₃)	0	0	ſ
Bicarbonate (HCO ₂)		43	149
Sulfate (SO ₄)		14	3.4
Chloride (Cl)		2, 5	4
Fluoride (F)	.1	1.2	.8
Nitrate (NO ₃)		.3	.0
Dissolved solids	49	77	200
Hardness as CaCO ₃ :			
Total	21	40	66
Noncarbonate	0	5	0
~ ,	_	_	
Color	5	5	
pH	7. 2	7. 5	8.0
Specific conductance			
(micromhos at 25 C.)		109	
Turbidity	7		
Temperature (F.)		Sont 7 1051	70 4040
Date of collection	Oct. 16, 1950	Sept. 1, 1951	Sept. 27, 1948

Regular determinations at treatment plant, 1949-50

	as	kalini s CaC (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Мах	Min	Αv	Max	Min
Raw water Finished water	33 26	42 37	10 14	7.2 7.8		6. 9 6. 9	29 32	32 61	5 15	14 0	550 	3

a Clearwater River.

MOSCOW (Population, 10, 593)

Ownership: Municipal; supplies about 30 people outside the city limits. Total population supplied, about 10,620.

Source: 4 wells (1 to 4). Wells 1 to 3, each 254 ft deep; well 4, about 350 ft deep. The yield of these wells is reported to be 500-600, 820, 1,200, and 400-600 gpm. Wells 1, 2, and 3 are located close together. Well 4 is about three-quarters of a mile from wells 1, 2, and 3.

Treatment: None. Storage: 800,000 gal.

b Clearwater River. Analysis by U. S. Geological Survey.

MOSCOW -- Continued **ANALYSES**

(Analyses, in parts per million, by State Dept. of Public Health, Boise, Idaho)

	Well 3	Well 4		Well 3	Well 4
Silica (SiO ₂)	1. 2 . 02	59 : 2. 0 . 02	Hardness as CaCO ₃ : Total Noncarbonate	137 0	137 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	12	32 14 14	ColorpH	72	7. 2
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄)	0 171 25	0 171 23 2	(micromhos at 25 C.)	 51	21 51
Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 3	.3 .0 236	Date of collection	Feb. 26, 1951	Feb. 26, 1951
Diameter (inches)				254 15 1927	350 24

NAMPA (Population, 16, 185)

Ownership: Municipal; supplies also about 250 people outside the city limits.

Total population supplied, about 16,450.

Source: 5 artesian wells (1 to 5), 452, 452, 503, 575, and 452 ft deep. The yield of wells 1 and 2 combined is reported to be 1,000 gpm. The yield of wells 3, 4, and 5 is reported to be 900, 980, and 700 gpm.

Treatment: None. Storage: 225,000 gal.

ANALYSES

(Analyses, in parts per million, by Idaho State Dept. of Health, Boise, Idaho)

	Wells 1 and 2	Well 3	Well 4	Well 5
Silica (SiO ₂)	28	32	28	31
Iron (Fe)	.0	.0	. 0	. 0
Manganese (Mn)	.0	.0	. 0	.0
Calcium (Ca)	12	16	14	14
Magnesium (Mg)	2. 2	1, 2	1. 7	1. 7
Sodium (Na) Potassium (K)	٠. ا	54	51	49
Carbonate (CO ₃)	0	0	0	0
Bicarbonate (HCO ₃)	161	168	163	154
Sulfate (SO ₄) ······	8.2	9. 0	5.0	7.6
Chloride (Cl)	7	8	8	7
Fluoride (F)	1.5	1.2	1. 2	1.5
Nitrate (NO ₃)	0	0	0	0
Dissolved solids	185	201	186	188
Hardness as CaCO ₃ :				
Total	39	45	42	42
Noncarbonate	0	0	0.	0

NAMPA, Analyses -- Continued

	Wells 1 and 2	Well 3	Well 4	Well 5
ColorpH	0 7. 6	0 7. 7	0 7. 7	0 7.6
(micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	 0 75 Apr. 25,	76 Apr. 25,	 0 80 Apr. 25,	 0 76 Apr. 25,
	1951	1951	1951	1951
Depth (feet)	452 10, 8 1927-28	503 16 1949	575 16 1948	452 16 1947

ORCHARDS

(Population, 4,494)

Ownership: Lewiston Orchards Irrigation District. Total population supplied, about 5,000.

Source: Sweetwater Creek, and Webb Creek impounded in Soldiers Meadows
Reservoir; emergency supply from Lake Waha. Webb Creek water is diverted
through a canal to East Fork Sweetwater Creek. Lake Waha water is pumped,
when needed, into an upper tributary of Sweetwater Creek. All water used
by the District leaves Sweetwater Creek through a canal to Reservoir A.

Treatment: Water for domestic use: prechlorination, coagulation with alum and lime, sedimentation, rapid sand filtration, and ammoniation. Irrigation water is in a separate pipe system and is not treated.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: Soldiers Meadows Reservoir, Lake Waha, and Reservoir A, about 3,000,000,000 gal.

Finished-water storage: Reservoir, 1,500,000 gal.
ANALYSES

(Analyses, in parts per million, by State Dept. of Public Health, Boise, Idaho)

(Analyses, in parts per million, by State Dept. of Public Health, Boise, Idano)										
	Raw water	Finished water		Raw ' water	Finished water					
Silica (SiO ₂)	30	34	Hardness as CaCO ₃ :							
Iron (Fe)	.4	. 02	Total	48	62					
Manganese (Mn)	.0	. 00	Noncarbonate	0	13					
Calcium (Ca)		20								
Magnesium (Mg)	3.2	3.2	Color	50						
Sodium (Na)	7.8	7.1	pH	7.4	7. 7					
Fotassium (K)	J i	'''	Specific conductance							
Carbonate (CO ₃)		0	(micromhos at		ł					
Bicarbonate (HCO ₃)	73	61	25 C.)							
Sulfate (SO ₄)	2.8	24	Turbidity	56	0					
Chloride (Cl)	1	2	Temperature (F.)							
Fluoride (F)		.0	Date of analysis	May 16,	May 16,					
Nitrate (NO ₃)		.9		1951	1951					
Dissolved solids	a 96	a 121								

Regular determinations at treatment plant, Feb. - May, 1951

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water		59		7.5	7. 9	7. 1	43	60	35	43	210	12
Finished water	46	59	32	7.3	8.6	6. 8	60	78	51	0	0	0_

a Sum of determined constituents.

POCATELLO (Population, 26, 131)

Ownership: Municipal; supplies also about 500 people outside the city limits. Total population supplied, about 26,600.

Source: Gibson Jack Creek (70 percent of supply); Mink Creek (20 percent of supply); 8 wells from 70 to 105 ft deep (10 percent of supply). The yield of the wells ranges from 350 to 1,200 gpm. Well 5 is used regularly; the other 7 wells are used mostly during the summer months. Well 5 is 100 ft deep and is reported to yield 1,000 gpm.

Treatment: Chlorination.

Raw-water storage: Approximately 11,000,000 gal.

Finished-water storage: --

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Anaryses, in parts pe	r million, by o.	S. Georogical Sc	11 1037
	Mink Creek (raw water)	Well 5	Gibson Jack Creek (finished water)
Silica (SiO ₂)	23	23	14
Iron (Fe)		. 02	. 12
Manganese (Mn)			
Calcium (Ca)	58	65	30
Magnesium (Mg)	15	24	6.6
Sodium (Na)	12	32	6.0
Potassium (K)	2.7	5. 1	1.4
Carbonate (CO ₃)	. 0	0	0
Bicarbonate (HCO ₃)	249	300	116
Sulfate (SO_4)	8.8	35	6.4
Chloride (Cl)		38	9. 1
Fluoride (F)	. 1	. 2	.1
Nitrate (NO ₃)	. 2	5.3	. 5
Dissolved solids	260	3 68	136
Hardness as CaCO ₃ :			
Total	206	260	102
Noncarbonate	2	14	. 7
Color	12	5	12
рН	8.2	7.5	7. 9
Specific conductance			
(micromhos at 25 C.)	437	629	219
Turbidity			
Temperature (F.)	42	52	42
Date of collection	Mar. 29, 1951	Mar. 29, 1951	Mar. 29, 1951
Depth (feet)		100	
Diameter (inches)		18	
Date drilled			
Percent of supply			

SANDPOINT (Population, 4, 265)

Ownership: Municipal; supplies also Kootenai, Pend Oreille, and about 500 people outside the city limits. Total population supplied, about 5,750.

Source: Sand Creek; auxiliary supply from Lake Pend Oreille. Only 1 percent of the supply was obtained from Lake Pend Oreille during 1950.

Treatment: Pressure filtration when water is turbid, and chlorination.

Rated capacity of treatment plant: Filter capacity, 2,000,000 gpd.

Raw-water storage: 1,400,000 gal.

Finished-water storage: --

The intake on Sand Creek is 4.5 miles northwest of Sandpoint.

165 IDAHO

SANDPOINT--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Sand Creek (finished water)		Sand Creek (finished water)
Silica (SiO ₂)	8.9	Hardness as CaCO ₃ :	
Iron (Fe)	. 02	Total	8
Manganese (Mn)		Noncarbonate	0
Calcium (Ca)	2.7		
Magnesium (Mg)	.2	Color	5
Sodium (Na)	1.2	pH	7.0
Potassium (K)	.8	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	· 10	25 C.)	16
Sulfate (SO ₄)	1.5	Turbidity	
Chloride (Cl)	.5	Temperature (F.)	50
Fluoride (F)	.1	Date of collection	June 20,
Nitrate (NO ₃)	.1		1951
Dissolved solids	20		

TWIN FALLS

(Population, 17,600)
Ownership: Municipal; supplies 33 people outside the city limits. Total population supplied, 17,633.

Source: Snake River. The city water is obtained from the lower-line canal of the Twin Falls irrigation system.

Treatment: Coagulation with alum, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 6,000,000 gpd. (The filter plant is being enlarged so that it will have a capacity of 10,000,000 gpd.)

Raw-water storage: None.

Finished-water storage: Reservoir, 500,000 gal.

ANALYSES

(Analyses,	m parts	ber milli	on, by U. S. Geologica	u Survey)	
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	19	17	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 03	Total	192	197
Manganese (Mn)			Noncarbonate	28	44
Calcium (Ca)	49	51			
Magnesium (Mg)	17	17	Color	5	7
Sodium (Na)	22	23	рН	8. 1	7.9
Potassium (K)	4.3	4.2	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	200	186	25 C.)	459	483
Sulfate (SO ₄)	47	56	Turbidity		
Chloride (Cl)	24	27	Temperature (F.)	49	45
Fluoride (F)		.7	Date of collection	Mar.26,	Mar. 26,
Nitrate (NO ₃)	. 9	.3		1951	1951
Dissolved solids	280	293	1	1	ļ

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO ₃ (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity				
	Αv	Max	Min	Αv	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		190 180		8. 2 7. 4	8.3 7.5	8. 1 7. 4				 		

AMES, IOWA (Population, 22,898)

Ownership: Municipal.

Source: 4 wells (1, and 3 to 5), 109, 112, 120, and 127 ft deep. The yield of the wells is reported to be 500, 600, 1,000, and 1,600 gpm. Normally well 5 is used most of the time for the supply. The other wells are pumped as needed.

Treatment: Aeration, softening with lime and soda ash, sedimentation, recarbonation, chlorination, sodium hexametaphosphate, and rapid sand filtration.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,750,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		•	- , , , 					
	Well 5	Well 5		Well 5	Well 5			
	(raw	(finished		(raw	(finished			
	water)	water)		water)	water)			
Silica (SiO ₂)	24	15	Hardness as CaCO ₃ :					
Iron (Fe)	6.3	. 13	Total	363	73			
Manganese (Mn)	. 20	. 03	Noncarbonate	60	44			
Calcium (Ca)	98	23						
Magnesium (Mg)	29	3.8	Color ······	4	4			
Sodium (Na)	13	27	рН	. 7. 5	8.5			
Potassium (K)	3.2	3.5	Specific conductance					
Carbonate (CO ₃)	0		(micromhos at					
Bicarbonate (HCO ₃)	369	a 36	25 C.)	716	284			
Sulfate (SO ₄)	87	85	Turbidity	2	0.2			
Chloride (Cl)	8.0	9.0	Temperature (F.)	52	52			
Fluoride (F)		.3	Date of collection	Feb. 23,	Feb. 23,			
Nitrate (NO ₃)	. 3	1.3		1951	1951			
Dissolved solids	464	190			1			
Depth (feet)					127			
Depth (feet)								
Date drilled								
Percent of supply	• • • • • • • • • • • • • • • • • • • •	••••••			1947			
To-come or pupper		••••••	· · · · · · · · · · · · · · · · · · ·		I			

a Includes the equivalent of less than 5 ppm of carbonate (CO₃).

BOONE (Population, 12, 164)

Ownership: Municipal; also supplies about 200 people outside the city limits. Total population supplied, about 12,400.

Source: 10 wells (11 to 20), 46, 67, 52, 54, 67, 51, 61, 55, 56, and 64 ft deep. The yield of the wells is reported to be (well 11 not reported) 900, 780, 600, 875, 900, 300, 300, 300, and 300 gpm, respectively.

Treatment: Chlorination.

Raw-water storage: 3,000,000 gal. Finished-water storage: 1,100,000 gal. BOONE -- Continued

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

IOWA

<u> </u>	Finished	, b, o. b. coolog.com	Finished
	water		water
	(composite)		(composite)
Silica (SiO ₂)	18	Hardness as CaCO ₃ :	
Iron (Fe)	. 08	Total	418
Manganese (Mn)	. 57	Noncarbonate	126
Calcium (Ca)	103		
Magnesium (Mg)	39	Color	5
Sodium (Na)	27	рН	7.7
Potassium (K)	3.7	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	357	25 C.)	844
Sulfate (SO ₄)	141	Turbidity	0.7
Chloride (Cl)	31	Temperature (F.)	54
Fluoride (F)	. 2	Date of collection	Feb. 23,
Nitrate (NO _s)	2.5		1951
Dissolved solids	564		

BURLINGTON (Population, 30,613)

Ownership: Municipal; also supplies about 1,600 people outside the city limits. Total population supplied, about 32,200.

Source: Mississippi River.

Treatment: Prechlorination, coagulation with alum and lime, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 7, 200, 000 gpd.

Raw-water storage: None.

Finished-water storage: 3,500,000 gal.

The chemical composition of the raw water varies considerably throughout the year.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

Finished water		Finished water
8.8 .12 .00	Hardness as CaCO ₃ : Total Noncarbonate	154 49
13 4. 1 2. 1	Color	12 7. 8
128 47 8.0 .1 3.6	25 C.)	324 16 47 Apr. 11, 1951
	8.8 .12 .00 41 13 4.1 2.1 0 128 47 8.0 .1	Water

Regular determinations at treatment plant, 1950

	1	s CaC	lkalinity CaCO ₃ (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		178 158		7. 9 7. 3		6. 6 7. 1		200 200	90 122	60 .37	1100 5.5	40 0

CEDAR FALLS (Population, 14,334)

Ownership: Municipal; also supplies 25 people outside the city limits. Total

population supplied, 14,359.

Source: 7 wells (1 to 7) each 125 ft deep.

Treatment: None. Storage: 750,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells (composite) City tap	, ., . , .	Wells (composite) City tap
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	15 . 06 . 00 65 20 4. 6	Hardness as CaCO ₃ : Total Noncarbonate Color pH Specific conductance	244 24 2 7. 6
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	1. 0 0 268 21 4. 5 . 2 8. 3	(micromhos at 25 C.)	475 1 May 9, 1951
Depth (feet)	125 8-16 1912-49 100		

CEDAR RAPIDS (Population, 72, 296)

Ownership: Municipal. Source: Cedar River.

Treatment: Softening with lime and soda ash, coagulation with alum and ferric sulfate, activated carbon, recarbonation, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 24,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 8,200,000 gal.

There is considerable variation in the composition of the raw water throughout the year.

CEDAR RAPIDS--Continued ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water	Raw water a
Silica (SiO ₂)	12	9. 7	11
Iron (Fe)		.11	.07
Manganese (Mn)	.00	.00	.00
Calcium (Ca)	64	30	58
Magnesium (Mg)	17	5.9	19
Sodium (Na)		12	11
Potassium (K)	1.8	1.9	2.4
Carbonate (CO ₃)	0		0
Bicarbonate (HCO ₃)	207	b44	218
Sulfate (SO ₄)	44	61	37
Chloride (Cl)	9.0	12	13
Fluoride (F)	. 2	.3	. 2
Nitrate (NO ₃)	18	13	8. 1
Dissolved solids	300	182	277
Hardness as CaCO _s :		102	
Total	228	99	224
Noncarbonate		63	
Color	10	1	14
рН	7.7	9.0	7.7
Specific conductance	, ,	,,,,	
(micromhos at 25 C.)	464	278	455
Turbidity		0.5	
Temperature (F.)			54
Date of collection	May 12, 1951	May 12, 1951	1944-45

Regular determinations at treatment plant, 1950

•	as	kalini s CaC (ppm)	iCO ₃ рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water	152			8.4			192			145		
Finished water	43			9.5			88			lo		

^a Average of 36 analyses of 10-day composites of daily samples of Cedar River at Cedar Rapids, 1944-45 (Water Supply Paper 1030, p. 148, 1949). Extremes:-Dissolved solids, maximum 370 ppm; minimum 193 ppm. Total hardness, maximum 300 ppm; minimum 151 ppm.

b Includes the equivalent of less than 5 ppm of carbonate (CO₃).

CENTERVILLE (Population, 7,625)

Ownership: Municipal.

Source: 2 impounding reservoirs. Number 2 reservoir collects water from surface run-off and supplies it to No. 1 reservoir as it is needed.

Treatment: Aeration, coagulation with alum, activated carbon, addition of lime and chlorine, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 1, 200, 000 gpd.

Raw-water storage: Impounding reservoirs, 400,000,000 gal.

Finished-water storage: Elevated storage, 500,000 gal.

The treatment plant is near No. 1 Reservoir and water flows to it by gravity from that reservoir.

CENTERVILLE--Continued

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	6. 0 . 10 . 22	Hardness as CaCO ₃ : Total Noncarbonate	192 126
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	59 11 10 5.7	Color	7 7. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	80 125 13 .1 4.4 340	25 C.)	444 0.6 46 Apr. 10, 1951

CHARLES CITY (Population, 10, 309)

Ownership: Municipal; also supplies about 200 people outside the city limits. Total population supplied, about 10,500.

Source: 4 wells (1, and 3 to 5), 1, 241, 1, 260, 1, 315, and 287 ft deep. The yield of the wells is reported to be 500, 580, 690, and 1, 500 gpm. Well 5 is a flowing well, reported as yielding from Cedar Valley limestone.

Treatment: None. Storage: 800,000 gal.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

(Allarysis, in par	rts per million	i, by U. S. Geological Surve	·y)
	Wells		Wells
	1, 3, and 4		1, 3, and 4
	(composite)		(composite)
Silica (SiO ₂)	8.5	Hardness as CaCO ₃ :	
Iron (Fe)	. 17	Total	244
Manganese (Mn)	.00	Noncarbonate	13
Calcium (Ca)	61		
Magnesium (Mg)	22	Color	3
Sodium (Na)	13	рН	7.8
Potassium (K)	5.8	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	282	25 C.)	515
Sulfate (SO ₄)	39	Turbidity	0.4
Chloride (Cl)	2.5	Temperature (F.)	
Fluoride (F)	.8	Date of collection	May 9,
Nitrate (NO ₃)	1.7		1951
Dissolved solids	294		

CHEROKEE (Population, 7,705)

Ownership: Municipal; also supplies Illinois Central Railroad Co. Total population supplied, 7,705.

Source: 3 wells (1 to 3), 209, 201, and 210 ft deep. The wells are located in the same area.

Treatment: Chlorination,

Raw-water storage: 500,000 gal. Finished-water storage: 500,000 gal.

171

CHEROKEE--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	28 . 45 . 03	1	344 50
Calcium (Ca)	94 27 26 5.1	Color pH Specific conductance (micromhos at	4 7.5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	359 106 1.5 .6 1.9	Turbidity Temperature (F.) Date of collection	704 3 53 Feb. 21, 1951
Depth (feet) Diameter (inches) Date drilled			201-210 8-15 1912-47 100

CLINTON

(Population, 30, 379)

Ownership: Clinton Water Works Co.

Source: 5 artesian wells (3, and 5 to 8), 1,685, 1,800, 2,101, 2,101, and 2,106 ft deep. The yield of the wells is reported to be 1,000, 800, 1,250, 2,000, and 1,348 gpm. Well 8 furnishes about one-third of the supply.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 1,250,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(23.02)	Finished	Well 8 (finished	on, by c. B. Georogica	Finished	Well 8 (finished			
	water a	water)		water ^a	water)			
Silica (SiO ₂)		9.8	Hardness as CaCO ₃ :					
Iron (Fe)		. 33	Total	277	2 58			
Manganese (Mn)		.00	Noncarbonate	8	8			
Calcium (Ca)		54						
Magnesium (Mg)		30	Color	1	2			
Sodium (Na)		13	pH	8.2	7.9			
Potassium (K)		7.0	Specific conductance					
Carbonate (CO ₃)	0	0	(micromhos at					
Bicarbonate (HCO ₃)	329	306	25 C.)	670	535			
Sulfate (SO_4)		23	Turbidity	0.6	1			
Chloride (Cl)		11	Temperature (F.)	68				
Fluoride (F)	. 4	.3	Date of collection	May 11,	May 11,			
Nitrate (NO ₃)		1.0		1951	1951			
Dissolved solids	388	300						
Depth (feet)					2,106			
Diameter (inches)								
Date drilled								
			•••••		1944 33			

a Composite sample from well 3 (10 percent) and well 7 (90 percent).

COUNCIL BLUFFS (Population, 45, 429)

Ownership: Municipal. Source: Missouri River.

Treatment: Prechlorination, coagulation with alum and lime, sedimentation, am-

moniation and postchlorination.

Rated capacity of treatment plant: 8,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 13,000,000 gal.

There is considerable variation in the composition of the water throughout the year. The new treatment plant, now under construction, will have provisions for softening the supply.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	13	Hardness as CaCO ₃ :	0.00
Iron (Fe)	. 06		262
Manganese (Mn)	. 03	Noncarbonate	88
Calcium (Ca)	69		
Magnesium (Mg)	22	Color	4
Sodium (Na)	54	pH	8.3
Potassium (K)	5.0	Specific conductance	
Carbonate (CO _s)	0	(micromhos at	
Bicarbonate (HCO ₃)	212	25 C.)	720
Sulfate (SO_4)	180	Turbidity	4
Chloride (Cl)	16	Temperature (F.)	34
Fluoride (F)	.5	Date of collection	Feb. 27,
Nitrate (NO ₃)	2.0		1951
Dissolved solids	484	i	

CRESTON (Population, 8, 317)

Ownership: Municipal; also supplies about 100 people outside the city limits.

Total population supplied, about 8, 400.

Source: Artificial lake (impounded surface runoff).

Treatment: Coagulation with alum, lime, carbon, ammoniation (ammonium sulfate), sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd. Raw-water storage: 461,900,000 gal in lake.

Finished-water storage: Elevated tank, 1, 200, 000 gal.

CRESTON -- Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	8.2	7.3	Hardness as CaCO ₃ :		
Iron (Fe)	. 08	. 03	Total	96	112
Manganese (Mn)	. 04	. 02	Noncarbonate	13	24
Calcium (Ca)	26	32			
Magnesium (Mg)	7.6	7.8	Color	20	4
Sodium (Na)	6.0	5.3	pH	7.4	7.8
Potassium (K)	5.9	4.8	Specific conductance	ļ	
Carbonate (CO ₃)	0	o	(micromhos at		ļ
Bicarbonate (HCO ₃)	101	108	25 C.)	225	256
Sulfate (SO ₄)	23	31	Turbidity	45	2
Chloride (Cl)	3.0	6.5	Temperature (F.)	42	44
Fluoride (F)		.3	Date of collection	Feb. 27,	Feb. 27,
Nitrate (NO ₃)	2.8	1.2	ł	1951	1951
Dissolved solids		172		1	l .

Regular determinations at treatment plant, 1950

	as	kalini CaC (ppm)	O _s	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
ĺ	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water		92	60		8.0	7. 2		103	86	-		
Finished water		90	50		8.0	7.0		103	86			

DAVENPORT (Population, 74,549)

Ownership: Davenport Water Co.; also supplies about 500 people outside the city limits, and the city of Bettendorf. Total population supplied, about 80, 200.

Source: Mississippi River.

Treatment: Coagulation with alum, sedimentation, carbon if necessary, lime for pH adjustment, rapid sand filtration, chlorination, and fluoridation (approved 1952).

Rated capacity of treatment plant: 14,000,000 gpd.

Raw-water storage: 5,000,000 gal.

Finished-water storage: 5,000,000 gal.

The water from the river flows by gravity into a raw-water well from which it is pumped at the beginning of the treatment process.

DAVENPORT--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

_	Finished water		Finished water
Silica (SiO ₂)	7.9	Hardness as CaCO _s :	
Iron (Fe)	. 07	Total	12 8
Manganese (Mn)	. 00	Noncarbonate	61
Calcium (Ca)	36		
Magnesium (Mg)	9.3	Color	5
Sodium (Na)	3.4	pH	7. 2
Potassium (K)	2.2	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	82	25 C.)	291
Sulfate (SO ₄)	56	Turbidity	1
Chloride (Cl)	5.0	Temperature (F.)	55
Fluoride (F)	.1	Date of collection	May 11,
Nitrate (NO ₃)	5.4		1951
Dissolved solids	196		

Regular determinations at treatment plant, 1950

	as	kalini CaC((ppm)	O ₃	рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Мах	Min	Av	Max	Min
Raw water Finished water		1		7.6 7.0		7. 2 6. 9	140 144	162 162	112 127		570 . 83	35 . 11

DES MOINES (Population, 177, 965)

Ownership: Municipal; also supplies a population of about 17,600 in other communities outside the city limits. Total population supplied, about 195,000.

Source: Infiltration gallery along the Raccoon River, 50 to 75 percent of supply; Raccoon River impounded, 25 to 50 percent of the supply.

Treatment: Softening with lime and soda ash, coagulation with alum, recarbonation, rapid sand filtration and addition of polyphosphate for stabilization, and chlorination.

Rated capacity of treatment plant: 48,000,000 gpd.

Raw-water storage: Impounding reservoir, 1,570,000,000 gal.

Finished-water storage: Clear wells, 10,000,000 gal; tower, 2,000,000 gal.

The infiltration gallery is constructed of reinforced concrete rings 2 ft long and 4 and 5 ft inside diameter, placed in the sand and gravel 15 to 31 ft deep in one continuous line parallel with the river and from 150 to 300 ft back from the main channel. It is constructed to permit the entrance of water from the surrounding sand and gravel through openings between each ring, and serves the double purpose of collecting the water and carrying it by gravity to the pumping station. At the present time the gallery is approximately 3 miles long.

The impounding reservoir is located southwest of Commerce in the Raccoon River valley. Water from this source is used during drought periods or in emergencies.

DES MOINES--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water ^a	Finished water ^a		Raw water a	Finished water ^a
Silica (SiO ₂)	16	11	Hardness as CaCO ₃ :		
Iron (Fe)	. 10	. 03	Total	342	78
Manganese (Mn)	. 03	.02	Noncarbonate	71	31
Calcium (Ca)	88	12			
Magnesium (Mg)	30	12	Color	5	3
Sodium (Na)	16	38	рН	7.6	9.8
Potassium (K)		3.6	Specific conductance		
Carbonate (CO ₃)	0	26	(micromhos at		
Bicarbonate (HCO.)	330	4.0	25 C.)	677	341
Sulfate (SO ₄)	87	90	Turbidity	2	0.4
Chloride (Cl)	14	14	Temperature (F.)	48	52
Fluoride (F)		.2	Date of collection	Feb. 26,	Feb. 26,
Nitrate (NO ₃)	1.4	1.4		1951	1951
Dissolved solids		212			

Regular determinations at treatment plant

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		275 49			7.8 10.3			365 114	202 44	21 . 18	1000 . 61	1

a Infiltration gallery.

DUBUQUE (Population, 49,671)

Ownership: Municipal.

Source: 8 wells (1 to 8), 1,300, 1,300, 1,460, 1,460, 1,500, 1,504, 1,563, and 1,781 ft deep for regular supply; mine tunnel (known as the "Levels" Spring), auxiliary supply. The yield of the wells is reported to be 2,800 (wells 1 to 4, pumped as a unit), 900, 2,000, 2,400, and 2,430 gpm.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: 10,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoirs, elevated tanks, and standpipe, 12,000,000 gal.

DUBUQUE -- Continued

			ANAL				
1	(Analysis.	in parts per	million.	bv U.	S.	Geological	Survey)

		<u> </u>	<u> </u>
	Wells (finished water)		Wells (finished water)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca)	. 24 . 00 57	Hardness as CaCO ₃ : Total Noncarbonate	282 18
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	34 3.4 2.6 0 322 18 5.5 .2	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	3 7.8 525 2 May 10, 1951
Diameter (inches)	•••••••		1,300-1,781 6-15 1899-1946 100

ESTHERVILLE (Population, 6,719)

Ownership: Municipal.

Source: 5 wells (1 to 5) 35, 25, 400, 395, and 395 ft deep; yield reported to be 500 (not reported for well 2), 2,045, 1,115, and 1,115 gpm, respectively.

Treatment: None.

Storage: Elevated tank and standpipe, 800,000 gal.

"NALYSIS." (Analysis, in parts per million, by U. S. Geological Survey)

	,,	, by c. b. declogical ball	, , ,
	Wells 3, 4,5 (composite)		Wells 3, 4, 5 (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	19 1.7 .00	Hardness as CaCO ₃ : Total Noncarbonate	632 360
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	156 59 63 4.8	pH	4 7.8
Bicarbonate (HCO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	0 332 483 3.5 .4 5.6	Turbidity Temperature (F.) Date of collection	1,370 20 54 May 31, 1951

FAIRFIELD

(Population, 7, 299)

Ownership: Municipal.

Source: Reservoir (impounded runoff from the surrounding terrain) for regular supply; 3 wells for emergency use only.

Treatment: Prechlorination, coagulation with alum and lime, activated carbon (Nuchar) postchlorination, and rapid sand filtration.

Rated capacity of treatment plant: 900,000 gpd.

Raw-water storage: Reservoir.

Finished-water storage: 650,000 gal.

FAIRFIELD--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

Finished water		Finished water
2.6	Hardness as CaCO ₃ :	
.07	Total	143
.00	Noncarbonate	79
43		
8.7	Color	3
3.6	pH	7.5
4.3	Specific conductance	
0	(micromhos at	
78	25 C.)	316
7 5	Turbidity	0.8
11	Temperature (F.)	48
.1	Date of collection	Apr. 10,
1.1	[1951
236		
	water 2.6 .07 .000 43 8.7 3.6 4.3 0 78 75 11 .1 1.1	Water

Regular determinations at treatment plant, 1950

,	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		120	63 	7.3 7.8	7.8	 7. 5					90 . 7	5 .1

FORT DODGE (Population, 25, 115)

Ownership: Municipal; also supplies about 3,500 people outside the city limits. Total population supplied, about 28,600.

Source: 5 artesian wells (8, 9, 12, 14, and 15), 1,040, 553, 507, 973, and 2,307 ft deep. The yield of the wells is reported to be 1,000, 1,500, 1,500, 2,800, and 2,800 gpm. The greater part of the supply is furnished by well 15.

Treatment: Aeration, chlorination, sedimentation, and rapid sand filtration.

Rated capacity of treatment plant: 9,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,000,000 gal.

FORT DODGE -- Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

			, , ,		
	Well 15 (raw	Wellsb 8, 9, 12,		Well 15 (raw	Wells b 8, 9, 12,
	water) a			water)a	
Silica (SiO ₂)		14	Hardness as CaCO ₃ :		
Iron (Fe)	.4	. 16	Total	432	466
Manganese (Mn)		. 03	Noncarbonate	172	99
Calcium (Ca)	104	115			
Magnesium (Mg)	42	44	Color		4
Sodium (Na)	175	∫ 60	pH	7.1	7.6
Potassium (K)	7113	6.6	Specific conductance		
Carbonate (CO _s)	0	`ŏ`	(micromhos at		
Bicarbonate (HCO.)	318	448	25 C.)		1,050
Sulfate (SO ₄)	223	170	Turbidity		2
Chloride (Cl)	227	40	Temperature (F.)		52
Fluoride (F)	. 2	.7	Date of collection	Dec. 31,	Feb. 23.
Nitrate (NO ₃)		3.1		1948	1951
Dissolved solids	1,073	692			
Depth (feet)		•		2,307	1
				12	
Date drilled	1948				
			•••••		
- or come or bupping				<u> </u>	

a Analysis by Sanitary and Hydraulic Engineer, Ames, Iowa.

FORT MADISON (Population, 14,954)

Ownership: Municipal. Source: Mississippi River.

Treatment: Coagulation with alum and lime, activated carbon, sedimentation,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: 650,000 gal. Finished-water storage: 130,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

(to por minimo	, b, c. b, ccccg-car car.	71
	Finished water		Finished water
Silica (SiO ₂)	9. 2 . 18 . 00		135 83
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	38 9.8 4.0 3.0	ColorpHSpecific conductance	4 7. 0
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	0 64 68 13	(micromhos at 25 C.)	304 2 49 Apr. 11,
Nitrate (NO ₃)	. 1 7. 9 228	Date of Confection	1951

b Finished water.

FORT MADISON--Continued Regular determinations at treatment plant, 1950

•	Alkalinity as CaCO ₃ (ppm)		рĤ			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		1 1	90 100	7. 4 7. 0	7.8 7.2	7. 0 7. 0					3000 . 5	0.5

GRINNELL

(Population, 6,828)

Ownership: Municipal; also supplies a few people outside the city limits. Total population supplied, about 6,860.

Source: 2 wells (5 and 6) 2,260 and 2,498 ft deep. The yield of the wells is reported to be 520 and 800 gpm, respectively.

Treatment: Aeration (proposed), zeolite softening, adjustment of pH and chlorination.

Rated capacity of treatment plant: 800,000 gpd.

Raw-water storage: 1,000,000 gal. Finished-water storage: 300,000 gal.

ANALYSES
(Analyses, in parts per million, by U. S. Geological Survey)

(Analyses,	m parts	ber mun	on, by U. S. Geologica	i Buivey)			
	Well 5 (raw	Well 5 (finished		Well 5 (raw	Well 5 (finished		
	water)	water)		water)	water)		
Silica (SiO ₂)	12	15	Hardness as CaCO ₃ :				
Iron (Fe)	. 58	. 13	Total	399	103		
Manganese (Mn)	.00	.00	Noncarbonate	112	0		
Calcium (Ca)	89	25					
Magnesium (Mg)	43	9.8	Color	2	2		
Sodium (Na)	126	278	p H	7.5	8.3		
Potassium (K)	16	8.2	Specific conductance				
Carbonate (CO ₃)	0	6	(micromhos at]			
Bicarbonate (HCO ₃)	351	362	25 C.)	1,230	1,400		
Sulfate (SO ₄)		343	Turbidity	1	1		
Chloride (Cl)	23	34	Temperature (F.)		50		
Fluoride (F)	1.2	1.2	Date of collection	May 14,	May 14,		
Nitrate (NO ₃)	5.6	4.6		1951	1951		
Dissolved solids	8 34	914					
Depth (feet)				2,260			
Diameter (inches)				6			
Date drilled	Diameter (inches) Date drilled						
Percent of supply	Percent of supply						
=				1	1		

IOWA CITY (Population, 27, 212)

Ownership: Iowa Water Service Co.; also supplies University Heights and Coralville. Total population supplied, about 28,600.

Source: Iowa River.

Treatment: Aeration (spray), prechlorination, coagulation with alum and lime, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: 500,000 gal.

Finished-water storage: 1,700,000 gal.

The composition of the raw water varies considerably throughout the year. Extremes for the year (Oct. 1, 1944 to Sept. 30, 1945, 36 analyses of 10-day composites), dissolved solids, 400-203 ppm; total hardness, 345-156 ppm (Geological Survey W. S. P. 1030, page 142, 1949).

IOWA CITY--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

,	Finished water		Finished water
Silica (SiO ₂)	11	Hardness as CaCO ₃ :	
Iron (Fe)	. 12	Total	23 8
Manganese (Mn)	.00	Noncarbonate	114
Calcium (Ca)	68		
Magnesium (Mg)	17	Color	5
Sodium (Na)	4.6	pH	7. 2
Potassium (K)	2.4	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	151	25 C.)	491
Sulfate (SO ₄)	90	Turbidity	1
Chloride (Cl)	11	Temperature (F.)	
Fluoride (F)	.1	Date of collection	May 12,
Nitrate (NO ₃)	17	·	1951
Dissolved solids	332		

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Aτ	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water				 7. 6	8.0	7. 2	 240	340	 120	350 	3200 	3

KEOKUK (Population, 16, 144)

Ownership: Municipal. Source: Mississippi River.

Treatment: Prechlorination, coagulation with alum, softening with lime, sedi-

mentation, activated carbon, ammoniation (ammonium sulfate), recarbonation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,000,000 gal.

The composition of the raw water varies considerably throughout the year.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	8.4 .08 .00	Hardness as CaCO ₃ : Total Noncarbonate	170 77
Calcium (Ca)	55 7.9 3.6 3.0	Color pH Specific conductance	3 7.8
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	0 114 64 9,0	(micromhos at 25 C.) Turbidity Temperature (F.)	362 1
Fluoride (F) Nitrate (NO ₃) Dissolved solids	9. 0 . 0 7. 4 246	Date of collection	Apr. 11, 1951

KEOKUK--Continued Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН		Hardness as CaCO ₃ (ppm)		Turbidity					
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		198 122		7. 7 8. 8	8.6 9.3	6.8 8.0	198 100	230 170	62 6 8	80 0	1200 2	5 0

KNOXVILLE (Population, 7,625)

Ownership: Municipal; also supplies 50 people outside the city limits. Total population supplied, 7,675.

Source: 5 wells (1, 2, 3, 5, and 6) 47, 46, 46, 52, and 47 ft deep. The yield of the wells is reported to be 390, 390, 500, 550, and 550 gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 2,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	16 . 08 . 00	Hardness as CaCO ₃ : Total Noncarbonate	268 58
Calcium (Ca)	74 20 7.4 1.8	Color	3 7. 7
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	257 54 9.0 .2	25 C.)	530 0.7 May 14,
Dissolved solids	4.9 340		1951

MARSHALLTOWN (Population, 19,821)

Ownership: Municipal; also supplies Soldiers Home and about 150 people outside the city limits. Total population supplied, about 20,500.

Source: 4 wells, 50, 100, 170, and 225 ft deep for regular supply. Iowa River, auxiliary supply. The yield of the wells is reported to be 350, 2,000, 700, and 700 gpm, respectively.

Treatment: Aeration, softening with lime, recarbonation, sedimentation, and rapid sand filtration.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,500,000 gal.

MARSHALLTOWN--Continued ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

())	F	Po	on, by o. b. deorogram	- 2 - 177	
	Wells	Wells		Wells	Wells
,	(raw	(finished)	1	,	(finished
	water)	water)		water)	water)
Silica (SiO ₂)		9. 1	Hardness as CaCO ₃ :		
Iron (Fe)	2.7	. 08	Total	308	112
Manganese (Mn)	. 46	. 02	Noncarbonate	70	72
Calcium (Ca)		23			
Magnesium (Mg)	26	13	Color	5	4
Sodium (Na)	21	21	pH	7.7	7. 5
Potassium (K)	2.3	2.3	Specific conductance	ľ	
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	291	49	25 C.)	643	337
Sulfate (SO ₄)	105	105	Turbidity	15	0, 5
Chloride (Cl)	5.0	5.5	Temperature (F.)	46	47
Fluoride (F)	. 4	.3	Date of collection		Feb. 24,
Nitrate (NO ₂)	1.8	3.5		1951	1951
Dissolved solids	416	220			

MASON CITY (Population, 27, 980)

Ownership: Municipal.

Source: 6 wells (7 to 12), 1,230, 1,219, 1,200, 1,243, 1,306, and 1,585 ft deep. The yield of wells 7, 8, 9, and 10 is reported to be 1,000 gpm, each, and of

wells 11 and 12, 1, 200 gpm, each.

Treatment: None. Storage: 6,000,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	rts per initiion	i, by U. S. Geological Surve	y)
	Wells (composite)		Wells (composite)
Silica (SiO ₂)	8.3 .19 .00		330 0
Calcium (Ca)	79 32 40 2.4	ColorpHSpecific conductance (micromhos at	1 7. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	407 66 7.5 .6 2.2	25 C.)	760 0.8 50 May 9, 1951
Dissolved solids	444		3.00

MUSCATINE (Population, 19,041)

Ownership: Municipal; also supplies about 600 people outside the city limits. Total population supplied, about 20,600.

Source: 12 wells, each 50 ft deep. Five 8-in. wells, and five 12-in. wells are pumped into a single suction line. The two 20-in. wells (1 and 2) are pumped separately. The yields are reported to be (not reported for the 8-in. wells) 900 gpm, each, for the 12-in. wells, and 1,100 gpm, each, for wells 1 and 2.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 3,500,000 gal.

MUSCATINE--Continued
ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	16	Hardness as CaCO _s :	
Iron (Fe)	. 14	Total	162
Manganese (Mn)	. 00	Noncarbonate	31
Calcium (Ca)	42		
Magnesium (Mg)	14	Color	1
Sodium (Na)	4.4	pH	8.0
Potassium (K)	.6	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	160	25 C.)	334
Sulfate (SO ₄)	20	Turbidity	0.7
Chloride (Cl)	7.0	Temperature (F.)	
Fluoride (F)	.1	Date of collection	May 11,
Nitrate (NO ₃)	11		1951
Dissolved solids	204		

NEWTON (Population, 11,723)

Ownership: Municipal; also supplies about 1,500 people outside the city limits.

Total population supplied, about 13, 200.

Source: 11 wells 51 to 65 ft deep. The yield for most of the wells is reported to be 300 gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: Reservoir, 3,200,000 gal; elevated tank, 600,000 gal.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

(Allarysis, ili pai	ts per minnon	i, by U. S. Geological Surve	;y)
	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	22	Hardness as CaCO ₃ :	
Iron (Fe)	. 68	Total	337
Manganese (Mn)	. 31	Noncarbonate	96
Calcium (Ca)	86		
Magnesium (Mg)	30	Color	3
Sodium (Na)	7. 7	рН	7.5
Potassium (K)	1.8	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	294	25 C.)	622
Sulfate (SO ₄)	95	Turbidity	3
Chloride (Cl)	5.5	Temperature (F.)	53
Fluoride (F)	.1	Date of collection	Feb. 26,
Nitrate (NO ₃)	1.3		1951
Dissolved solids	414		

OELWEIN (Population, 7,858)

Ownership: Municipal.

Source: 2 wells (35 and 42), 119 and 1,328 ft deep. A third well (31), 122 ft deep, is to be put into service soon (1951). The yield of the wells is reported to be 520 and 750 gpm.

Treatment: None. Storage: 780,000 gal.

OELWEIN -- Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells 35 and 42		Wells 35 and 42
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	8. 0 . 08 . 00	Hardness as CaCO ₃ : Total Noncarbonate	234 3
Calcium (Ca)	44 30 20 7.8	Color pH Specific conductance	7. 7
Carbonate (CO ₃)	0 282 45 2, 5 . 9 2, 9	(micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	526 0.6 May 10, 1951

OSKALOOSA (Population, 11, 124)

Ownership: Municipal; also supplies about 275 people outside the city limits. Total population supplied, about 11,400.

Source: Skunk River, 70 percent of supply; 4 wells (11 to 14) 52, 54, 44, and 44 ft deep, 30 percent of supply. The yield of the wells is reported to be 900, 975, 900, and 1,000 gpm.

Treatment: Softening with lime and soda ash, coagulation with alum, recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: 7,000,000 gal. Finished-water storage: 750,000 gal.

At the time of the collection of the sample for analysis in May 1951, the wells were furnishing the entire supply because of a special condition of the Skunk River which required a long detention period for clarification. There is a possibility that the river may be discontinued as a source of supply, although this was the principal source in 1950.

OSKALOOSA--Continued ANALYSES

(Analyses, in parts per million, by State Hygienic Laboratory, Iowa City)

	Well 11	Well 12	Well 14	Wells a	Wells b
Silica (SiO ₂)					12
Iron (Fe)	0.4	7.5	5.0	0.1	. 08
Manganese (Mn)	.6	3.2	2. 2	.0	.00
Calcium (Ca)	68	82	92	24	25
Magnesium (Mg)	21	24	26	4.9	5. 5
Sodium (Na)					17
Potassium (K)	} 12	14	13	22	1.3
Carbonate (CO ₃)	٥ ٢		0	5	0
Bicarbonate (HCO ₃)	251	303	361	46	58
Sulfate (SO ₄)	57	71	59	66	59
Chloride (Cl)	10	6	6.0	7	8.0
Fluoride (F)	.3	. 1	. 2	1	.2
Nitrate (NO ₃)	2. 1	1.8	1.8	3.5	2.9
Dissolved solids	325	372	411	167	166
Hardness as CaCO ₂ :			ĺ		
Total	258	326	349	80	85
Noncarbonate	50	54	44	34	37
Colon		•			
Color					2
Specific conductance	7.4	7.2	7.2	8.6	8.3
(micromhos at 25 C.)	400		201	044	004
Turbidity	492	562	621	241	264 0.5
Temperature (F.)	58	52			0.5
Date of collection			Doc 16	Dec. 5,	May 14,
Date of Collection	Dec. 5, 1950	Dec. 5,	Dec. 16, 1950	1950	1951
D (1 (6 ()		1950		1900	1901
Depth (feet)	52	54	44		1
Diameter (inches)	26	26	26		Ì
Date drilled	1945	1947	1949		
Percent of supply					ł

a Finished water, composite.

OTTUMWA (Population, 33,631)

Ownership: Municipal; also supplies about 500 people outside the city limits. Total population supplied, about 34, 100.

Source: Des Moines River.

Treatment: Aeration, softening with lime and soda ash, coagulation with alum or iron sulfate, activated carbon, recarbonation, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 8,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 11,000,000 gal.

There is considerable variation in the composition of the raw water throughout the year.

b Finished water, composite. Analyzed by Geological Survey.

OTTUMWA--Continued

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	12	7.1	Hardness as CaCO ₃ :		
Iron (Fe)	. 29	. 12	Total	131	80
Manganese (Mn)	. 13	. 00	Noncarbonate	32	50
Calcium (Ca)	38	30			
Magnesium (Mg)	8.8	1.3	Color	40	_
Sodium (Na)	1.6	11	pH	7.4	7.8
Potassium (K)		3.2	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	119	36	25 C.)	271	233
Sulfate (SO ₄)	30	63	Turbidity	310	0.9
Chloride (Cl)	2.0	4.5	Temperature (F.)		
Fluoride (F)		.1	Date of collection	Apr. 10,	Apr. 10,
Nitrate (NO ₃)	11	7.9		1951	1951
Dissolved solids		162			

Regular determinations at treatment plant, 1949

	as	kalini CaC (ppm)	O ₃	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
_	Av	Max	Min	Av	Max	Min	Αv	Max	Min	: Av	Max	Min
Raw water	161	270	85	7.8	8.5	7.0	224	338	156	416	8000	20
Finished water		80	16	8.0	9. 2	7.2	86	122	70	. 20	1.5	0

SHENANDOAH

(Population, 6,938)

Ownership: Municipal; also supplies about 400 people outside the city limits. Total population supplied, about 7,300.

Source: 13 wells (3 to 15) ranging from 33 to 70 ft deep. The yield of the wells is reported to range from 125 to 250 gpm and to average 179 gal.

Treatment: Aeration, softening with lime and soda ash, coagulation, sedimentation, recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: None.

Finished-water storage: Water tower, 400,000 gal; reservoir, 450,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		osite)		6 We	ells osite)
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	20	20	Hardness as CaCO ₃ :		1
Iron (Fe)	1. 2	.08	Total	400	176
Manganese (Mn)	. 46	.00	Noncarbonate	166	128
Calcium (Ca)	106	25			1
Magnesium (Mg)	33	28	Color	4	3
Sodium (Na)	15	31	pH	7.2	9.1
Potassium (K)	2. 1	1.9	Specific conductance		ł
Carbonate (CO ₃)	0	12	(micromhos at		1
Bicarbonate (HCO ₃)	286·	34	25 C,)	778	500
Sulfate (SO ₄)	167	157	Turbidity	1	0.4
Chloride (Cl)	22	23	Temperature (F.)		56
Fluoride (F)	. 3	.2	Date of collection	Apr. 9,	Apr. 9,
Nitrate (NO ₃)	1.1	1.1		1951	1951
Dissolved solids	608	366			L

SIOUX CITY (Population, 83, 991)

Ownership: Municipal; also supplies Morningside, Leeds, and Riverside. Total population supplied, about 91,000.

Source: 12 wells (2 to 7, 11, 14, and 16 to 19), 288 to 377 ft deep. The yield of

the wells is reported to range from 1, 110 to 1,750 gpm.

•Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 24,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water a		Finished water a
Silica (SiO2)	25 . 40 . 12 125	1 2 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	472 141
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	39 37 8.4 0 404 183 26 .1 1.2	Color	2 7.5 982 1 54 June 15, 1951
Diameter (inches)	• • • • • • • • • • • • • • • • • • • •		323-374 16-20 1940-48

a Composite sample, wells 14, 17, 18, and 19, Main Street pumping station.

SPENCER (Population, 7,446)

Ownership: Municipal.

Source: 4 wells (5 to 8) 46, 37, 34, and 31 ft deep.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 80,000 gal.

Iron content of the water is reported to average 3.5 ppm. It is proposed to aerate the supply for the removal of the iron.

SPENCER--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

Finished water composite)		Finished water (composite)
25	Hardness as CaCO ₃ :	
1.7	Total	580
.34	Noncarbonate	328
176		
34	Color	3
10	pH	7.8
2.6	Specific conductance	
0		
308	25 C.)	1,090
330	Turbidity	12
14	Temperature (F.)	
. 1	Date of collection	May 31,
1.0		1951
828		
		31-46
		31-40
		1948-50
		1040-00
	water composite) 25 1.7 .34 176 34 10 2.6 0 308 330 14 .1 1.0 828	water composite) 25 1.7 .34 176 34 10 2.6 0 2.6 0 308 330 Turbidity 11 1.0 Date of collection Date of collection 25 Total Noncarbonate Color pH

STORM LAKE (Population, 6,954)

Ownership: Municipal; supplies also a few consumers outside the city limits. Total population supplied, about 6,970.

Source: 3 wells (1 to 3) 110, 115, and 210 ft deep. The yield of each well is reported to be 694 gpm. Storm Lake is used for auxiliary supply.

Treatment: Aeration, softening with lime, coagulation with alum, sedimentation, recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Clear well, 211,620 gal; standpipe, 290,000 gal.

STORM LAKE--Continued

ANALYSES
(Analyses, in parts per million, by U. S. Geological Survey)

(Imaly ses,	III par to	ber mitti	on, by o. B. Geologica	I Dui vey)	
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	3. 1 . 06	29 . 13 . 02	Hardness as CaCO ₃ : Total Noncarbonate	470 135	
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	40 26 4.4 0 409 169 14 .3	67 42 25 4.9 0 242 166 15 .3	Color	54 7.4 922 25 54 Feb. 21, 1951	7.7 725 0.6 55
Depth (feet)	110-210 72 1934-48 100				

WATERLOO (Population, 65, 198)

Ownership: Municipal.

Source: 7 wells (7 to 13), 84, 82, 87, 81, 82, 87, and 81 ft deep. The yield of

each well is reported to be 2,000 gpm. Treatment: Chlorination and ammoniation. Raw-water storage: None.

Finished-water storage: 9,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey) Finished Finished water water (composite) (composite) Silica (SiO₂) Hardness as CaCO.: 16 . 04 Total Iron (Fe) 241 Noncarbonate 48 Manganese (Mn)00 67 Calcium (Ca) Magnesium (Mg) 2 18 Color 7.9 Sodium (Na) 6.6 pH Potassium (K) 8 Specific conductance Carbonate (CO_s) 0 (micromhos at Bicarbonate (HCO₃) 236 477 25 C.)..... 0.6 Sulfate (SO₄) 35 Turbidity Chloride (Cl) 10 Temperature (F.)..... Fluoride (F) May 9, . 2 Date of collection 1951 13 Nitrate (NO₃) Dissolved solids 294 Depth (feet) 81-87 Diameter (inches) 16-24 Date drilled 1931-48 Percent of supply 100

WEBSTER CITY (Population, 7,611)

Ownership: Municipal.

Source: 4 wells (1 to 4) 1,900, 110, 80, and 75 ft deep. The yield of the wells is reported to be 1,000, 700, 300, and 500 gpm.

Treatment: Softening with lime and soda ash, coagulation with alum, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,440,000 gpd.

Raw-water storage: None.

Finished-water storage: Clear well, 450,000 gal; elevated tank, 250,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water a	Finished water ^a		Raw watera	Finished watera
Silica (SiO ₂)	19	6, 6	Hardness as CaCO ₃ :		
Iron (Fe)	1.7	. 14	Total	427	64
Manganese (Mn)			Noncarbonate	52	27
Calcium (Ca)		13			
Magnesium (Mg)	49	7.7	Color	4	3
Sodium (Na)	28	78	p H	7.6	9.8
Potassium (K)	5.2	7.3	Specific conductance		
Carbonate (CO ₃)	0	20	(micromhos at		
Bicarbonate (HCO ₃)	458	5.0	25 C.)	846	528
Sulfate (SO ₄)	99	170	Turbidity	5	0.3
Chloride (Cl)	10	20	Temperature (F.)	50	50
Fluoride (F)	1.4	.7	Date of collection	Feb. 23,	Feb. 23,
Nitrate (NO ₃)	. 3	.4		1951	1951
Dissolved solids	530	328		}	
Denth (feet)				4 000	
Diameter (inches)	75-1,900				
Date drilled	12-18	ŀ			
Percent of supply	••••••	1927-39			
Torcome of suppry	• • • • • • • • • • • • •	• • • • • • • • • • • •		100	l

a Composite.

. KANSAS 191

ARKANSAS CITY (Population, 12,903)

Ownership: Municipal.

Source: 8 wells.

Treatment: Chlorination (as the water leaves the storage reservoir).

Storage: 2,000,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

(Analysis, in parts per infilion, by U. S. Geological Survey)							
	Finished water (composite)		Finished water (composite)				
Silica (SiO ₂) Iron (Fe)	14	Hardness as CaCO ₃ : Total	342				
Manganese (Mn)	.0	Noncarbonate	130				
Calcium (Ca)	106						
Magnesium (Mg)	19	Color	5				
Sodium (Na)	107	pH	7.5				
Potassium (K)	2.8	Specific conductance					
Carbonate (CO _s)	0	(micromhos at					
Bicarbonate (HCO ₃)	260	25 C.)	1,110				
Sulfate (SO ₄)	119	Turbidity					
Chloride (Cl)	162	Temperature (F.)					
Fluoride (F)	. 3	Date of collection	May 25,				
Nitrate (NO _s)	5.0		1951				
Dissolved solids	706						

ATCHISON (Population, 12, 792)

Ownership: Atchison City Water Works, Inc. (nonprofit company); also supplies about 1,500 people outside the city limits. Total population supplied, about 14,300.

Source: Missouri River.

Treatment: Plain sedimentation in two basins of 2,000,000 gal capacity, each, coagulation with lime and alum, sedimentation, break point chlorination, and rapid sand filtration.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 7,500,000 gal. Finished-water storage: 1,500,000 gal.

The composition of the raw water varies throughout the year.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	14	Hardness as CaCO ₃ :	
Iron (Fe)	. 01	Total	2 86
Manganese (Mn)	. 00	Noncarbonate	94
Calcium (Ca)	82		
Magnesium (Mg)	20	Color	2
Sodium (Na)	59	pH	8.0
Potassium (K)	5.6	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	234.	25 C.)	779
Sulfate (SO ₄)	181	Turbidity	0. 3
Chloride (Cl)	27	Temperature (F.)	35
Fluoride (F)	.4	Date of collection	Mar. 23,
Nitrate (NO ₃)	2.7		1951
Dissolved solids	538		

ATCHISON--Continued Regular determinations at treatment plant, 1950

	as	kalini CaC (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Αv	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water Finished water	160 150	1	88 80		8.4 8.6	7. 1 7. 2		360 380			2000	10 . 05

CHANUTE (Population, 10, 109)

Ownership: Municipal. Source: Neosho River.

Treatment: Coagulation with alum, softening with lime and soda ash, chlorination, activated carbon at times, copper sulfate at times, sedimentation, recarbonation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: --

Finished-water storage: 900,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂) Iron (Fe)	7. 9 . 02	8. 1 . 22	Hardness as CaCO ₃ : Total	183	81
Manganese (Mn)	. 02	. 22	Noncarbonate	69	13
Calcium (Ca)	57	26			
Magnesium (Mg)	10	3.9	Color	5	
Sodium (Na)	10	24	pH	6.7	7.9
Potassium (K)	2.8	2.8	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at	}	ì
Bicarbonate (HCO ₃)	140	83	25 C.)	407	282
Sulfate (SO ₄)	78	53	Turbidity		
Chloride (Cl)	.11	11	Temperature (F.)	75	75
Fluoride (F)	. 1	,2	Date of collection	May 31,	May 31,
Nitrate (NO ₃)	2. 5	2.4		1951	1951
Dissolved solids	281	182			

COFFEYVILLE (Population, 17, 113)

Ownership: Municipal. Source: Verdigris River.

Treatment: Coagulation with alum, softening with lime and soda ash, activated carbon at times, sedimentation, recarbonation, coagulation with alum, secondary sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: --

Finished-water storage: 6,000,000 gal.

KANSAS 193

COFFEYVILLE--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	9.0	7.9	Hardness as CaCO ₃ :		
Iron (Fe)		. 00	Total	176	i
Manganese (Mn)			Noncarbonate	32	58
Calcium (Ca)	54	30			
Magnesium (Mg)	10	1.7	Color ·····	50	5
Sodium (Na)	28	28	рн	7.9	9.4
Potassium (K)	2, 2	2.1	Specific conductance		
Carbonate (CO _s)	0	8	(micromhos at		
Bicarbonate (HCO _s)	176	13	25 C.)	480	327
Sulfate (SO ₄)	26	39	Turbidity		
Chloride (Cl)	51	57	Temperature (F.)	74	57
Fluoride (F)		.1	Date of collection	May 31,	May 31,
Nitrate (NO ₃)	2, 2	1.4		1951	1951
Dissolved solids		215		<u> </u>	

Regular determinations at treatment plant, 1950

	as	kalini CaC (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water				 9. 0			 114			 1		

DODGE CITY (Population, 11, 262)

Ownership: Municipal.

Source: 6 wells. The yield of the wells is reported to range from 500 to 1,200 gpm. The water is pumped from the wells directly into the distribution system.

Treatment: None. Storage: 1,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells (city tap)		Wells (city tap)
Silica (SiO ₂)	29 .00	Hardness as CaCO ₃ : Total Noncarbonate	248 56
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	63 22 17 3.6	PH	5 7. 6
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	234 54 15 1.6	25 C.)	528 May 23, 1951
Dissolved solids	368		

EL DORADO (Population, 11,037)

Ownership: Municipal.

Source: Satchel Creek impounded in Lake El Dorado, 4.7 miles from the Court-

house in the city. Walnut River, emergency supply.

Treatment: Coagulation with alum and lime, sedimentation, activated carbon at times, rapid sand filtration, and chlorination. Copper sulfate is used for control of algae, when necessary.

Rated capacity of treatment plant: 2,500,000 gpd.

Raw-water storage: 1,000,000,000 gal. Finished-water storage: 1,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	9. 2 . 00 	Hardness as CaCO ₃ : Total Noncarbonate	121 52
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂)	43 3.4 5.0 2.8	Color pH Specific conductance (micromhos at	10 7.8
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	0 85 50 7.8 .0 1,4	25 C.)	268 May 24, 1951

EMPORIA (Population, 15,669)

Ownership: Municipal.

Source: Neosho River (impounded). Emergency supply, Kaholo Lake.

Treatment: Coagulation with alum and lime, carbon at times, sedimentation,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: (Not reported.)

Finished-water storage: 3,000,000 gal.

EMPORIA -- Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	10° 1.8	10 . 01 	Hardness as CaCO ₃ : Total Noncarbonate	115 6	107 39
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂)	36 6. 2 7. 3 2. 9	41 1.1 6.5 2.6	Color	100 7. 5	5 10. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	0 133 13 2.8	a 41 0 45 8.0	25 C.)	244 May 24,	269 May 24,
Fluoride (F) Nitrate (NO ₃) Dissolved solids	3. 9 192	. 1 1. 7 168	Date of confection	1951	1951

Regular determinations at treatment plant, 1950

•	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	A٧	Max	Min	Αv	Max	Min
Raw water Finished water				9.0		1 1	102			 1		

a Includes the equivalent of 1.0 ppm of hydroxide (OH).

FORT SCOTT

(Population, 10,335)

Ownership: Municipal; also supplies about 275 people outside the city limits.

Total population supplied, about 26,400.

Source: Marmaton River for regular supply; Rock Creek Lake and Elm Creek Lake for auxiliary supply.

Treatment: Coagulation with alum, softening with lime, activated carbon, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: Rock Creek Lake and Elm Creek Lake.

Finished-water storage: 1,300,000 gal.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	7. 1 . 00	Hardness as CaCO ₃ : Total Noncarbonate	164 79
Calcium (Ca)	59 4.1 3.4 2.4 0 104 67 11 1.7 236	Color	358 20 June 27, 1951

FORT SCOTT--Continued Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water	185	250	54	7.6	8.1	7.4	200	266	66	200	4000	14
Finished water	95	156	44	7.8	8.3	7.6	130	200	84			

GARDEN CITY (Population, 10, 905)

Ownership: Municipal.

Source: 4 wells each approximately 275 ft deep. The water from the wells is

pumped directly into the distribution system.

Treatment: None. Storage: 500,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(mary ses, m p	ar co por m.			Ÿ	
	Wells (composite)	Gillespie Well	Boncraft Well	Second St. Well	Taylor St. Well
Silica (SiO ₂)	20				
Iron (Fe)	. 00	~-			
Manganese (Mn)					
Calcium (Ca)	58				
Magnesium (Mg)	19				
Sodium (Na)	44				
Potassium (K)	3.5				
Carbonate (CO ₃)	0				
Bicarbonate (HCO ₃)	200	214	204	158	203
Sulfate (SO_4)	131				
Chloride (Cl)	16	15	13	12	10
Fluoride (F)	.7				
Nitrate (NO ₃)	6.8				
Dissolved solids	424	394	359	266	332
Hardness as CaCO ₃ :			l	l	
Total	222	220	214	180	200
Noncarbonate	58				
		•			
Color	5				
pH	7.6				1
Specific conductance	0.50	505		440	501
(micromhos at 25 C.)	612	597	555	443	501
Turbidity]
Temperature (F.)			35 00	M 20	Mor. 22
Date of collection	May 22,	May 22,	May 22,	May 22,	
	1951	1951	1951	1951	1951

GREAT BEND (Population, 12,665)

Ownership: Western Light and Telephone Co., Inc. Source: 4 wells (1 to 4), 75, 117, 68, and 99 ft deep.

Treatment: Chlorination. Finished-water storage: None.

Water from the wells is pumped directly into the distribution system.

KANSAS 197

GREAT BEND--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Finished water (composite)	Well 2	Well 3	Well 4
Silica (SiO ₂)	18			
Iron (Fe)	.0			
Manganese (Mn)				
Calcium (Ca)				
Magnesium (Mg)	18			
Sodium (Na)	107			
Potassium (K)	3.6			
Carbonate (CO ₃)	0			
Bicarbonate (HCO ₃)	202	212	204	204
Sulfate (SO_4)	156			
Chloride (Cl)	135	170	145	140
Fluoride (F)	.6			
Nitrate (NO ₃)	3.0			
Dissolved solids	678	688	660	713
Hardness as CaCO ₃ :				
Total	304	292	306	296
Noncarbonate	138	118	139	129
ColorpH	0 7.6			
Specific conductance				
(micromhos at 25 C.)		1,080	1,030	1,030
Turbidity				
Temperature (F.)				
Date of collection	May 23,	May 23,	May 23,	May 23,
	1951	1951	1951	1951
Depth (feet)	• • • • • • • • • • • • • • • • • • • •	117	68	99
Diameter (inches)		18	18	19
Date drilled	• • • • • • • • • • • • • • • • • • • •	1937	1937	1946
Percent of supply				

HUTCHINSON (Population, 33,575)

Ownership: Glenn Dunn Co., Wichita, Kans.

Source: 8 wells (Adams Street, Main Street, Northwest, Northeast, Cleveland, Lorraine, North, and East), 65, 75, 60, 58, 80, 50, 65, and 59 ft deep, respectively; each 24 in. in diameter.

Treatment: Chlorination.

Finished-water storage: None.

Water from the wells is pumped directly into the distribution system. Partial analysis of a sample from each well indicates a range in dissolved solids from 479 to 1,070 ppm and hardness from 232 to 366 ppm.

HUTCHINSON--Continued ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Finished water (composite)	Northeast well	Adams Street well
Silica (SiO ₂)	16		
Iron (Fe)	.0		
Manganese (Mn)			
Calcium (Ca) ·····			
Magnesium (Mg)	- 19		
Sodium (Na)	144		
Potassium (K)	3.4		
Carbonate (CO ₃)	0		
Bicarbonate (HCO ₃)	255	230	270
Sulfate (SO ₄)	125		
Chloride (Cl)	230	125	385
Fluoride (F)	. 5		
Nitrate (NO ₃)	11		
Dissolved solids	8 53	479	1,070
Hardness as CaCO ₃ :			
Total	352	232	364
Noncarbonate	144	44	143
Color			
pH	7.3		
Specific conductance			
(micromhos at 25 C.)	1,340	854	1,810
Turbidity	·	~-	
Temperature (F.)			
Date of collection	May 23, 1951	May 23, 1951	May 23, 1951

INDEPENDENCE (Population, 11,335)

Ownership: Municipal.

Source: Verdigris River (impounded).

Treatment: Softening with excess lime, coagulation with alum, activated carbon at times, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: (Not reported.)
Finished-water storage: 2,000,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

			1		
	Raw	Finished		Raw	Finished
	water	water		water	water
Silica (SiO ₂)	9.4	7.0	Hardness as CaCO ₃ :		
Iron (Fe)	. 12		Total	186	143
Manganese (Mn)			Noncarbonate	29	82
Calcium (Ca)	58	42			
Magnesium (Mg)	10	9.2	Color	100	0
Sodium (Na)	29	29	pH	7.9	7.5
Potassium (K)	2.5	2.6	Specific conductance		İ
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	191	74	25 C.)	501	432
Sulfate (SO ₄)	27	69	Turbidity		
Chloride (Cl)	52	49	Temperature (F.)		80
Fluoride (F)	. 2	.1	Date of collection	May 31,	
Nitrate (NO ₃)		1.4	1	1951	1951
Dissolved solids	322	281			

KANSAS 199

JUNCTION CITY (Population, 13, 462)

Ownership: Municipal; also supplies about 500 people outside the city limits.

Total population supplied, about 14,000.

Source: 6 wells (2 to 7), 66, 59, 73, 67, 71, and 70 ft deep. The yield of well 2 is reported to be 950 gpm, and of remaining wells, each 1,000 gpm.

Treatment: Aeration, softening with lime and soda ash, coagulation with alum, sedimentation, rapid sand filtration, recarbonation, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,200,000 gal.

Water from several wells is mixed before entering treatment plant.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

:	Raw water a	Finished water b		Raw	Finished water b
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 01	20	Hardness as CaCO ₃ : Total Noncarbonate	284	122
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	88 16 28 7.3	27 13 26 7.4	ColorpHSpecific conductance	3 7. 5	2 8. 1
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	0 295 55 32	0 79 50 33	(micromhos at 25 C.)	658 1.0 58	0 59
Fluoride (F) Nitrate (NO ₃) Dissolved solids		. 3 26 254	Date of collection	Mar. 20, 1951	Mar. 20, 1951

a Composite of all wells.

KANSAS CITY (Population, 129,553)

Ownership: Municipal; also supplies about 35,000 people outside the city limits. Total population supplied, about 164,600.

Source: Missouri River. The raw water is obtained by means of either or both of two intake structures and equipment. It is first pumped to the electric power station where it is used for condensing purposes. When it leaves the condenser a sufficient amount is pumped to the settling basins at the water plant for the city supply. The remainder is wasted back into the river.

Treatment: Coagulation with alum, lime, silica, activated carbon, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 31,750,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoirs, 17,000,000 gal; elevated storage, 1,800,000 gal.

b Three wells.

KANSAS CITY--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	15	Hardness as CaCO _s :	
Iron (Fe)	. 01	Total	276
Manganese (Mn)	. 00	Noncarbonate	82
Calcium (Ca)	75		
Magnesium (Mg)	22	Color	3
Sodium (Na)	59	pH	7.9
Potassium (K)	5.6	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	237	25 C.)	770
Sulfate (SO ₄)	172	Turbidity	0.3
Chloride (Cl)	29	Temperature (F.)	46
Fluoride (F)	. 4	Date of collection	Mar. 23,
Nitrate (NO ₃)	2.8		1951
Dissolved solids	520		

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		1			8.6 8.4			368 360	136 158		9830 <1	26 <1

LAWRENCE (Population, 23, 351)

Ownership: Municipal; supplies also the University of Kansas and about 3,000 people outside the city limits. Total population supplied, about 31,300.

Source: Kansas River (60-75 percent of supply); 3 wells (1 to 3), 50, 50, and 51 ft deep (25-40 percent of supply). The yield of the wells is reported to be 450, 450, and 400 gpm.

Treatment: Prechlorination, softening with lime and soda ash, coagulation with alum, copperas (part time only), chlorine dioxide when needed, carbon, recarbonation, addition of Calgon, sedimentation, rapid sand filtration, and ammoniation.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 1,900,000 gal. Finished-water storage: 1,373,000 gal.

KANSAS 201

LAWRENCE -- Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water a	Finished water		Raw water ^a	Finished water
Silica (SiO ₂)	24	18	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 01	Total	368	
Manganese (Mn)	.00	.00	Noncarbonate	54	52
Calcium (Ca)	118	32		·	
Magnesium (Mg)	18	7.1	Color ·····	5	2
Sodium (Na)	5 3	55	рН	7.5	9.0
Potassium (K)	6.8	6.5	Specific conductance		!
Carbonate (CO ₃)	0	17	(micromhos at	j	ļ
Bicarbonate (HCO ₃)	3 8 4	34	25 C.)	890	506
Sulfate (SO ₄)	82	80	Turbidity	95	0.3
Chloride (Cl)	64	70	Temperature (F.)	46	47
Fluoride (F)	. 2	.2	Date of collection	Mar. 21,	Mar. 21,
Nitrate (NO _s)	4.4	2.0		1951	1951
Dissolved solids	568	324	ļ	1	

Regular determinations at treatment plant, 1950

	1	lkalir s CaC (ppm	O,	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water			100 36		8.3 9.6	7. 2 8. 7					15000 <1	

a Kansas River 75 percent, wells 25 percent.

LEAVENWORTH (Population, 20,579)

Ownership: Municipal; also supplies about 600 people outside the city limits. Total population supplied, about 21, 200.

Source: Missouri River.

Treatment: Plain sedimentation, softening with lime and soda ash, sedimentation, rapid sand filtration, recarbonation, and chlorination.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: 15,000,000 gal. Finished-water storage: 5,000,000 gal.

The composition of the raw water varies throughout the year.

LEAVENWORTH--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	13	Hardness as CaCO ₃ :	
Iron (Fe)	. 05	Total	130
Manganese (Mn)	.00	Noncarbonate	56
Calcium (Ca)	27		
Magnesium (Mg)	15	Color	2
Sodium (Na)	55	pH	8.9
Potassium (K)	5.3	Specific conductance	
Carbonate (CO ₃)	14	(micromhos at	
Bicarbonate (HCO ₃)	62	25 C.)	523
Sulfate (SO ₄)	140	Turbidity	0.5
Chloride (Cl)	24	Temperature (F.)	74
Fluoride (F)	.4	Date of collection	Mar. 23,
Nitrate (NO _s)	2.9		1951
Dissolved solids	346		

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water	 60	112	 42	8.2	9.6	 7. 2	110	118	100	 <1	 - 1	 <1

McPHERSON (Population, 8,689)

Ownership: Municipal.

Source: $\overline{4}$ wells (2 to 5) 160, 158, 146, and 161 ft deep, all within the city limits.

Treatment: None. Storage: 750,000.

0,000. ANALYSIS malysis, in parts per million, by U. S. Geological Surve

(Analysis, in par	ts per million	, by U. S. Geological Surve	<u>y)</u>
	Wells (city tap)		Wells (city tap)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	36 .0	Hardness as CaCO ₃ : Total Noncarbonate	359 86
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	124 12 32 2.7 0	Color pH Specific conductance (micromhos at	0 7.4
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	333 23 83 . 0	25 C.) Turbidity Temperature (F.) Date of collection	820 May 23,
Nitrate (NO ₃)	11 a488		1951

a Sum of determined constituents.

KANSAS 203

MANHATTAN (Population, 19,056)

Ownership: Municipal; also supplies about 2,000 people outside the city limits. Total population supplied, about 21,100.

Source: 5 wells (5 to 9), 68, 68, 63, 64, and 68 ft deep. The yield of the wells is reported to be 1,600, 1,200, 1,500, 800, and 1,700 gpm.

Treatment: Softening with lime and soda ash, and rapid sand filtration.

Rated capacity of treatment plant: 4,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,600,000 gal in reservoir and elevated tank.

A different well is pumped every half hour. Determinations made at the treatment plant show little or no difference in the chemical composition of water from each of the wells.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water ^a	Finished water ^a		Raw water ^a	Finished water a	
Silica (SiO ₂) Iron (Fe)	6. 9	17	Hardness as CaCO ₃ : Total	370	54	
Manganese (Mn) Calcium (Ca)		. 00	Noncarbonate	20	12	
Magnesium (Mg)	21	14 4.6	Color	2	2	
Sodium (Na) Potassium (K)		33 5, 5	pH Specific conductance	7.3	8.3	
Carbonate (CO ₃)	0	0	(micromhos at			
Bicarbonate (HCO ₃) Sulfate (SO ₄)	428 52	51 55	25 C.) Turbidity	755		
Chloride (Cl)	18	25	Temperature (F.)	56	56	
Fluoride (F) Nitrate (NO ₃)		1.4	Date of collection	1951	Mar. 20, 1951	
Dissolved solids		196				
1 , ,	Depth (feet)					
	Diameter (inches)					
Percent of supply	• • • • • • • • • • • • • • • • • • • •	•••••		100		

	$R\epsilon$	gular	deterr	ninat	ions at	treat	ment 1	olant,	1950			
	as	kalin CaC (ppm)	O ₃	рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		430 48		6. 9 9. 5	7. 5 10. 6		450 75	463 85	425 65	100 <1	120 <1	90 <1

a Composite.

NEWTON (Population, 11,590)

Ownership: Municipal.

Source: 7 wells in use; four additional wells drilled but not in use at this time.

The wells are located 7 to 10 miles from the city.

Treatment: Chlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: --

Finished-water storage: 4,200,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

(imaryoro, in par	to per minion	, by U. B. Geological Bulve	237
	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	26	Hardness as CaCO ₃ :	
Iron (Fe)	.00	Total	167
Manganese (Mn)		Noncarbonate	0
Calcium (Ca)	53		
Magnesium (Mg)	8.4	Color	0
Sodium (Na)	27	pH	7.0
Potassium (K)	1.4	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	211	25 C.)	416
Sulfate (SO_4)	28	Turbidity	
Chloride (Cl)	8.8	Temperature (F.)	
Fluoride (F)	.0	Date of collection	May 24,
Nitrate (NO ₃)	7.7		1951
Dissolved solids	264		

OTTAWA (Population, 10,081)

Ownership: Municipal; also supplies about 800 people outside the city limits.

Total population supplied, about 10,900.

Source: Osage River (impounded).

Treatment: Coagulation with alum, softening with lime and soda ash, activated carbon, alum, sedimentation, rapid sand filtration, fluoridation (sodium fluoride), ammoniation, and chlorination.

Rated capacity of treatment plant: 2,500,000 gpd.

Raw-water storage: Reservoirs, capacity unknown.

Finished-water storage: 1,250,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

			,		
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)		5.8	Hardness as CaCO ₃ :		120
Iron (Fe)		.01	Total	307	126
Manganese (Mn)	. 00	.00	Noncarbonate	78	82
Calcium (Ca)	9 3	32			
Magnesium (Mg)	18	11	Color	8	4
Sodium (Na)	22	25	pH	7.9	7.4
Potassium (K)	2.4	2.8	Specific conductance	1	
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	280	54	25 C.)	637	383
Sulfate (SO ₄)	110	117	Turbidity	15	2.0
Chloride (Cl)	11	13	Temperature (F.)	43	43
Fluoride (F)	. 1	.1	Date of collection	Mar. 22,	Mar. 22,
Nitrate (NO ₃)	1.7	2.2	1	1951	1951
Dissolved solids	440	252		<u> </u>	

KANSAS 205

OTTAWA -- Continued

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		350 110				7.0 7.5		395 110	80 90	50 <1	(a) <1	25 <1

(a) 10, 000.

PARSONS (Population, 14,750)

Ownership: Municipal.

Source: La Bette Creek. Auxiliary supply, Neosho River.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination. Copper sulfate is used for the control of algae when necessary

Rated capacity of treatment plant: 5, 180, 000 gpd.

Raw-water storage: 10,000,000 gal. Finished-water storage: 510,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	La Bette Cr. (finished water)	, 5, 6. 5. 6501085000 5601	La Bette Cr. (finished water)
Silica (SiO ₂)	4. 9 . 00	Hardness as CaCO ₃ : Total	131
Manganese (Mn)		Noncarbonate	66
Calcium (Ca)	43 5.8	Color	25
Sodium (Na)	10 2, 4	pH Specific conductance	7.2
Carbonate (CO _s)	0	(micromhos at	
Bicarbonate (HCO_3) Sulfate (SO_4)	79 82	25 C.) Turbidity	329
Chloride (Cl)	7.2	Temperature (F.)	79 May 31,
Fluoride (F) Nitrate (NO _s)	. 0 1. 1	Date of collection	1951
Dissolved solids	224		

PITTSBURG (Population, 19,341)

Ownership: Municipal.

Source: 3 wells (1 to 3), about 1,400 ft deep.

Treatment: Softening with excess lime, coagulation with alum, sedimentation, re-

carbonation, and rapid sand filtration.

Rated capacity of treatment plant: 3,630,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,700,000 gal.

PITTSBURG--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1 (raw	Well 2 (raw	Well 3 (raw	Finished water
	water)	water)	water)	(composite)
Silica (SiO ₂)	10	9.7	8.9	4.7
Iron (Fe)	. 02	. 12	. 25	. 02
Manganese (Mn)				
Calcium (Ca)	66	68	67	11
Magnesium (Mg)	31	33	34	14
Sodium (Na)	86	82	91	87
Potassium (K)	5.4	5. 1	6. 2	5.4
Carbonate (CO ₃)		0	0	
Bicarbonate (HCO ₃)	333	334	355	a 68
Sulfate (SO ₄) ·····	72	82	90	87
Chloride (Cl)	100	86	82	98
Fluoride (F)	. 5	. 5	. 7	. 3
Nitrate (NO ₃)	.1	.9	.8	7
Dissolved solids	535	531	556	342
Hardness as CaCO _s :	000	50.1		0.1
Total	292	305	307	85
Noncarbonate	19	32	16	30
Color	5	5	10	5
pH	7.5	7.4	7.3	8.6
Specific conductance				
(micromhos at 25 C.)	929	929	933	615
Turbidity				
Temperature (F.)	70		68	85
Date of collection	Nov. 29,	· Nov. 29,	Nov. 29,	Nov. 29,
	1951	1951	1951	1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН			rdnes CaC	ss	Turbidity			
	Av		<i>M</i> in	Av	Max	Min	Av	(ppm) Max	Min	Av	Max	Min
Raw water Finished water							297 85		 			

a Includes the equivalent of less than 5 ppm of carbonate (CO₃).

SALINA (Population, 26, 176)

Jwnership: Municipal.

Source: 10 wells (N-1, N-2, N-3, and 4 to 10), 62, 69, 86, 77, 62, 78, 70, 71, 64, and 75 ft deep. The yield of the wells is reported to be 1,040, 900, 800, 1,090, 1,040, 1,120, 1,090, 1,020, 900, and 1,200 gpm.

Treatment: Chlorination.

Rated capacity of treatment plant: 11,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,671,000 gal.

KANSAS 207

SALINA -- Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geolog	ical Survey)	
--	--------------	--

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	24 .08 .44 176 27 47 8.5 0 450 188 68 .2	Hardness as CaCO ₃ : Total	552 184 3 7.3 1,150 0.6 58 Mar. 20, 1951
Depth (feet)	••••••	••••••••••	62-86 24 1924-49 100

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		 414	334	7.0	7. 2	6.9	 548	734	442	 1	 1	 1

TOPEKA (Population, 78, 791)

Ownership: Municipal; also supplies about 14,200 people outside the city limits

and 1,000 at Forbes Air Base. Total population supplied, about 94,000. Source: Kansas River, 90 percent of supply; 3 wells, 37, 50, and 50 ft deep, 10 percent of supply. Water from the river and wells is mixed before entering the sedimentation basin.

Treatment: Plain sedimentation, softening with excess lime and soda ash, coagulation with alum, sedimentation, recarbonation, chlorination, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 12,000,000 gpd (to be increased to 16,000,000 gpd).

Raw-water storage: None.

Finished-water storage: Reservoirs and elevated storage, 13,000,000 gal.

TOPEKA--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		7	, <u> </u>		
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	20	14	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 01	Total	317	100
Manganese (Mn)	.00		Noncarbonate	78	56
Calcium (Ca)	95	29			
Magnesium (Mg)	19	6.7	Color	7	3
Sodium (Na)	71	83	рН	7.9	_
Potassium (K)	7. 9	7.6	Specific conductance		
Carbonate (CO.)	0	5	(micromhos at		
Bicarbonate (HCO.)	292	43	25 C.)	906	638
Sulfate (SO ₄)	113	112	Turbidity	.230	0.8
Chloride (Cl)	88	93	Temperature (F.)	37	41
Fluoride (F)		.2	Date of collection	Mar. 21,	Mar. 21.
Nitrate (NO ₃)		3.6		1951	1951 ´
Dissolved solids	572	390			

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		pН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water				8.3 9.4	8. 7 10. 1	8.0 8.9	253 98	418 143	90 68	1754 0	9040 0	100 0

WICHITA (Population, 168, 279)

Ownership: The city owns the production facilities; The Wichita Water Co. (a subsidiary of the American Water Works Co., Inc.) owns the pumping station and water-distribution system.

Source: 35 wells (1 to 35) ranging in depth from 90 to 265 ft, with average of about 200 ft, located in the Equus Beds west and south of the city of Halstead 30 to 35 miles from Wichita, for regular supply. Seven local wells (1 to 7) near the treatment plant are used in case of an emergency. Two wells (16 and 17) belonging to the Wichita Water Co. are so connected to the system that the water from them can be treated at the treatment plant. Shallow wells of the Wichita Water Co. located in the vicinity of the treatment plant and which have a total capacity of 20,000,000 gpd are available but are never used except in case of emergency.

Treatment: Aeration, softening with lime, chlorination, ammoniation, sedimentation, rapid sand filtration, postchlorination, and polyphosphate (Calgon) for stabilization.

Rated capacity of treatment plant: 48,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Clear wells, 1,000,000 gal; 2 reservoirs, 3,000,000 gal each. Wichita Water Co., 1 reservoir, 3,800,000 gal; 2 elevated tanks, 1,000,000 and 300,000 gal.

KANSAS 209

WICHITA -- Continued

The regular supply wells are spaced at least half a mile apart in the well field and have an average yield of about 1,000 gpm. The wells, equipped with turbine pumps, pump into spur lines connected to the 48-in. supply line which conveys the water to the treatment plant located in the city. The control, the operation of which is manual, of the wells is centered at the treatment plant, so that individual wells may be cut in or out of the pumpage as desired. There is considerable variation in the chemical composition of the water from the individual wells. The hardness ranges from about 115 to 250 ppm.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water ^a	Finished water a		Raw water ^a	Finished water ^a
Silica (SiO ₂)	21	20	Hardness as CaCO ₃ :		-
Iron (Fe)	1.6	.00	Total	200	86
Manganese (Mn)		l	Noncarbonate	0	0
Calcium (Ca)		19			
Magnesium (Mg)	11	9.4	Color	0	j 5.
Sodium (Na)	56	56	pH	7.3	9.1
Potassium (K)	2. 1	1.9	Specific conductance		
Carbonate (CO ₃)	0	13	(micromhos at		
Bicarbonate (HCO ₃)	255	84	25 C.)	595	418
Sulfate (SO ₄)	54	54	Turbidity		
Chloride (Cl)	36	43	Temperature (F.)		
Fluoride (F)		.5	Date of collection	May 24,	May 24,
Nitrate (NO ₃)	1.8	1.9		1951	1951
Dissolved solids	370	260			

Regular determinations at treatment plant, 1950

		lkalir s CaC (ppm	O,	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
_	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw waterb Finished waterc.	213 136		!	7. 0 8. 0			186 106					

a Composite.

b January.

c June.

WINFIELD (Population, 10, 264)

Ownership: Municipal.

Source: 5 wells: East well 1 and West well 1, each 38 ft deep; 3 wells (2, 3, and 4) which are double wells (holes side by side) each pair being pumped simultaneously by one pump, 38, 38, and 48 ft deep. The wells are about 5 miles west of the city and are spaced about 3,000 ft apart.

Treatment: Addition of lime and polyphosphate (Calgon) and chlorination.

Rated capacity of treatment plant: 3,888,000 gpd.

Raw-water storage: None.

Finished-water storage: 3,000,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	East well 1	West well 1	Well 4	Finished water (composite)
Silica (SiO ₂)				16
Iron (Fe)				.0
Manganese (Mn)				
Calcium (Ca)				99
Magnesium (Mg)				21
Sodium (Na)				35
Potassium (K)				1.9
Carbonate (CO ₃)				0
Bicarbonate (HCO ₃)	414	388	230	333
Sulfate (SO ₄)				81
Chloride (Cl)	8.5	15	28	26
Fluoride (F)				.7
Nitrate (NO ₃)				1.4
Dissolved solids	412	383	489	464
Hardness as CaCO ₃ :				
Total	324	324	22	334
Noncarbonate				60
Color				0
рН				7.6
Specific conductance			Ì	
(micromhos at 25 C.)	733	732	713	707
Turbidity				
Temperature (F.)				
Date of collection	May 25,	May 25,	May 25,	May 25,
	1951	1951	1951	1951
Depth (feet)	38	38	48	
Diameter (inches)				
Date drilled	1923	1923	1940	
Percent of supply				

ALEXANDRIA (Population, 34, 913)

Ownership: Municipal; supplies about 1,500 people outside of city limits. Total population supplied, about 35,400.

Source: 18 wells (U.S.G.S. R-7, R-12, R-15 to R-18, R-20, R-404 to R-406, R-408 to R-410, and R-421 to R-426) ranging in depth from 253 to 1, 202 ft; 1 well (R-458), 341 ft deep, used only in emergency. The yield of wells R-7, R-12, R-15, and R-405 is reported to be 400, 473, 400, and 400 gpm, respectively. (Data not available on other wells.)

Treatment: Chlorination.

Raw-water storage: None.

Finished-water storage: 3,200,000 gal.

The wells are pumped individually. The wells at Madison St., 5th and Monroe Sts., N. 3rd and McNutt Sts. pump into the main reservoir at 5th and Monroe Sts. The wells at the City Park pump into the reservoir at that location. The wells at 4th and Casson Sts. and at Bolton and Rapides Ave. have small storage tanks into which they pump.

The water is chlorinated at the intake of each of the storage points. It is pumped

from storage into the distribution system.

There is considerable difference in the chemical composition of the water from the individual wells. The greater number of the wells deliver water that is very soft. The analyses selected show approximately the range in dissolved solids and bardness of the waters from the wells.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Analyses, in p	arts per m	illion, by U	. S. Georg	gical Surve	y)
	Well R-404	Well R-408	Well R-423	Well R-409	Well R-15
Silica (SiO ₂)	28	30	47	28	49
Iron (Fe)	. 51	9. 0	. 03	13	. 15
Manganese (Mn)	. 0	. 3		. 4	
Calcium (Ca)	19	97	1. 2	116	1.3
Magnesium (Mg)	4.4	50	. 4	62	. 5
Sodium (Na)	.		101		∫ 89
Potassium (K)	250	7. 1	121	21	1.5
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	591	548	297	600	212
Sulfate (SO ₄)	16	2.0	1.0	55	11
Chloride (Cl)	77	9.0	14	30	11
Fluoride (F)			1. 2		. 9
Nitrate (NO ₃)	.0	. 0	.0	.0	.1
Dissolved solids	689	458	335	626	270
Hardness as CaCO _s :					
Total	66	448	4	544	5
Noncarbonate	0	0	0	53	0
Colon					0
Color	8.1	6.8	7.5	6.8	0
Specific conductance	0.1	0.0	1. 5	0.0	
(micromhos at 25 C.)	1, 130	817		1,050	
Turbidity	1, 130	017		1,000	
Temperature (F.)		68		68	
Date of collection	Aug. 25,		Aug. 25,	May 13,	Oct. 22,
Date of Coffeetion	1949	1948	1943	May 13, 1948	1938
D 11 (6 1)					
Depth (feet)	253	326	786	1,027	1, 202
Diameter (inches)	8.	12-8	12-8	12-6	12
Date drilled	1941	1941		1941	1935
Percent of supply					

BASTROP (Population, 12, 769)

Ownership: People Water Service, Inc.; supplies about 225 people outside city limits. Total population supplied, about 13,000.

Source: 3 wells (U.S.G.S. wells Mo-18, Mo-19, and Mo-65) >-65) 800, 600, 630 ft deep, and reported to yield 250, 650, and 950 gpm, respectively.

Treatment: None. Storage: 240,000 gal.

The analysis given is representative of the water served to the consumers.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

(Illiary Bib, Ill par	tes per milition	i, by o. b. deological bulve	· y /
•	Well Mo-65 (city well 3)		Well Mo-65 (city well 3)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 03	Hardness as CaCO ₃ : Total Noncarbonate	6 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	1.7 .4 281 1.2 0 422 1.9 186	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	35 8.0 1,220 74 Feb. 27,
Nitrate (NO ₃) Dissolved solids	. 5 697		1951
Date drilled	• • • • • • • • • • • • • • • • • • • •		630 12 ³ / ₄ -8 1948

BATON ROUGE (Population, 125, 629)

Ownership: The Baton Rouge Water Works Co., Istrouma Water Co., and Dixie Water Co.; supplying approximately 109,000, 11,000, and 6,000 people, respectively.

Source: 30 wells (The Baton Rouge Water Works Co., 19 wells; Istrouma Water Co., 8 wells; and Dixie Water Co., 3 wells). Three of the wells of the Baton Rouge Water Works Co. are 339, 338, and 343 ft deep; the remaining wells range in depth from 1,496 to 2,712 ft. The wells of the Istrouma Water Co. range in depth from 1,060 to 1,939 ft. The wells (EB-154, EB-447, and EB-514) of the Dixie Water Co. are 2,434, 1,626, and 2,865 ft deep, respectively.

Treatment: Chlorination of the water furnished by the Baton Rouge Water Works
Co. and the Dixie Water Co. No treatment of water furnished by the Istrouma
Water Co.

Storage: The Baton Rouge Water Works Co., 6,140,000 gal; the Istrouma Water Co., 30,000 gal; and the Dixie Water Co., 120,000 gal.

The wells are pumped individually by electric pumps. The water is pumped directly into the distribution system and to storage. All of the analyses are of water from the wells of the Baton Rouge Water Works Co. at different location or pumping stations, and are representative of the water served to the consumers.

LOUISIANA

BATON ROUGE--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Well Well Well Well Well EB-444 d EB-100a EB-151b EB-413 C EB-456 e Silica (SiO₂)..... 23 34 24 28 24 Iron (Fe) 23 . 13 .07 1.3 . 10 .00 Manganese (Mn)00 .05 .00 Calcium (Ca) 1.3 3.6 62 1.0 1.4 . 2 . 2 Magnesium (Mg) 18 1.7 . 3 83 Sodium (Na) 82 73 91 20 Potassium (K) 2.4 2.4 4.4 2.0 3.2 Carbonate (CO₃) 0 6 10 19 10 Bicarbonate (HCO₃)..... 190 186 314 191 165 Sulfate (SO₄) 13 11 9.0 1.0 11 Chloride (Cl) 6.2 8.0 5.0 3.8 7.2 . 1 . 2 Fluoride (F) 1 . 3 . 3 Nitrate (NO₃) 2. 5 .0 2.8 . 2 1.0 Dissolved solids 300 241 223 219 228 Hardness as CaCOs: 4 Total 228 4 16 4 0 Noncarbonate 0 0 0 0 Color pH 8.7 8.7 8.8 7.5 9.0 Specific conductance (micromhos at 25 C.) 347 505 344 322 383 Turbidity Temperature (F.)..... 70 96 88 93 86 Date of collection May 9, May 9, Sept. 26, May 9, May 9, 1951 1951 1951 1951 1949 Depth (feet) 2,253 1,895

	Well EB-504 f	Well EB-510 ^g		Well EB-504 f	Well EB-510 ^g
Silica (SiO ₂)		36	Hardness as CaCO ₃ :	_	
Iron (Fe)		. 24		6	2
Manganese (Mn)	\ - -	.00	Noncarbonate	0	0
Calcium (Ca)	. 6	.4		<u> </u>	
Magnesium (Mg)		.3	Color		
Sodium (Na)	76	₹67	pH	8.7	8.3
Potassium (K)			Specific conductance		
Carbonate (CO ₃)	10	l.` l	(micromhos at		
Bicarbonate (HCO ₃)	162	h 162	25 C.)	326	279
Sulfate (SO ₄)	16	9.6	Turbidity		
Chloride (Cl)	4.0	4.0	Temperature (F.)	88	85
Fluoride (F)		. 1	Date of collection	Sept. 26,	May 9,
Nitrate (NO ₂)	. 2	1.2		1949	1951
Dissolved solids		202		<u> </u>	

2,664

12 - 6

1,732

1946

1946

1947

12-9 5/81

343

18-12

Diameter (inches)......

Date drilled

Percent of supply

a Front Street. b Government Street Station. ^c Baton Rouge Water Works, d First Street. f Government Street Station, well 3. e Scotlandville, La. well 4. g Lula Street. h Includes the equivalent of less than 5 ppm of carbonate (CO₃).

BATON ROUGE -- Continued

	Well EB-504 f	Well EB-510g
Depth (feet)	1,777	1,605 12-9 5/8
Diameter (inches)		12-9 5/8
Date drilled	1949	1951
Percent of supply		

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO ₃ (ppm)			pH as			Hardness as CaCO ₃ (ppm)		Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water Finished water		124 120	72 72	8. 1 7. 9	8, 5 8, 1	7.6 7.7				67 	300 	25

f Government Street Station, well 4. g Lula Street.

BOGALUSA (Population, 17, 798)

Ownership: Municipal; supplies approximately 500 persons outside of city limits. Total population supplied, about 18,300.

Source: 6 wells (U.S.G.S. wells Wa-34, Wa-41, Wa-44 to/Wa-47) 1,500, 1,442, 1,450, 1,500, 1,500, and 1,500 ft deep. Emergency supply can be furnished by the Gaylord Container Corp.

Treatment: None.

Storage: 2 elevated tanks, each 250,000 gal; 2 underground tanks, each 500,000 gal.

ANALYSIS

(Analysis in parts per million by II S Geological Survey)

(Analysis, in par	rts per millior	i, by U. S. Geological Surve	ey)
	Well Wa-41		Well Wa-41
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	48 .06 .2 .3 44 .8 0 105 9.3 4.5 .2 .0	Hardness as CaCO ₃ : Total Noncarbonate Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	2 0 7 8.0 204 June 21, 1950
Depth (feet)	••••••••		1,442 12-9 5/8 1950

BOSSIER CITY (Population, 15, 470)

Ownership: City of Shreveport.

Source: Supplied by city of Shreveport (See Shreveport.)

CROWLEY (Population, 12, 784)

Ownership: Central-Louisiana Electric Co.

Source: 3 wells (U.S.G.S. wells Ac-169, Ac-170, and Ac-280), 280, 247, and 257 ft deep, and reported to yield 1,250, 900, and 1,400 gpm, respectively. Treatment: Aeration (trays), softening with lime, coagulation with iron salts,

sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 5, 100, 000 gpd.

Raw-water storage: None.

Finished-water storage: 1,060,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well Ac-280 a	Finished water		Well Ac-280 a	Finished water
Silica (SiO ₂)		28	Hardness as CaCO ₃ :		
Iron (Fe)		. 14	Total	216	81
Manganese (Mn)			Noncarbonate) 0	0
Calcium (Ca)		7.7			
Magnesium (Mg)	· 20	15	Color		5
Sodium (Na)	65	69	pH	7.3	8.6
Potassium (K)	6.0	2.8	Specific conductance	1	
Carbonate (CO.)	0	10	(micromhos at	1	
Bicarbonate (HCO.)	396	205	25 C.)	691	432
Sulfate (SO ₄)	.5	.8	Turbidity		
Chloride (Cl)	26	29	Temperature (F.)		70
Fluoride (F)	. 2	.2	Date of collection	Sept. 16,	Apr. 4,
Nitrate (NO.)		2.0		1950	1951
Dissolved solids	405	259			
Depth (feet)				257	
Diameter (inches)	12-10				
Date drilled	1942				
Percent of supply	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••		

aRaw water.

GRETNA (Population, 13,813)

Ownership: Municipal.

Source: Mississippi River. Emergency supply may be obtained from nearby in-

dustrial supply wells.

Treatment: Plain sedimentation, softening with lime, coagulation with iron salts, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,250,000 gal.

GRETNA--Continued ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 06	9.8 .05 .00	Hardness as CaCO ₃ : Total Noncarbonate	127 34	65 35
Calcium (Ca)	9. 7 13	21 3.0 13 4.4 15	Color	7.3	9.8
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	114 38 14	6 42 15	25 C.)	317 May 14,	237 May 14,
Nitrate (NO ₃) Dissolved solids		2.5 133		1951	1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			pН		as	rdness CaCO ₃ ppm)		Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water				7.8 9.6		7.8 9.6	115 70	130 75	100 60	800 2	1200 2	700 2

HOUMA (Population, 11, 505)

Ownership: Municipal.

Source: Intracoastal Canal (Bayou Black).

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration,

and chlorination.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: 30,000,000 gal. Finished-water storage: 450,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Allalyses,	III parts	ber mmi	oii, by U. S. Geologica	(Analyses, in parts per inition, by U. S. Geological Survey)												
	Raw water	Finished water		Raw water	Finished water											
Silica (SiO ₂)	8,6	7, 2	Hardness as CaCO ₃ :													
Iron (Fe)	.41	.18	Total	106	103											
Manganese (Mn)	.00	.00	Noncarbonate	39	72											
Calcium (Ca)	29	28														
Magnesium (Mg)	8.3	8.0	Color													
Sodium (Na)	26	28	рН	7.5	7.1											
Potassium (K)	3.6	2.8	Specific conductance		1											
Carbonate (CO ₃)	0	0	(micromhos at	ļ												
Bicarbonate (HCO ₃)	8 2	37	25 C.)	348	373											
Sulfate (SO ₄)	27	73	Turbidity													
Chloride (Cl)	42	44	Temperature (F.)													
Fluoride (F)		.3	Date of collection	May 14,	May 14,											
Nitrate (NO ₃)	1.8	1.2		1951	1951											
Dissolved solids	207	222]												

LOUISIANA

HOUMA--Continued Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)					as	Hardness as CaCO ₃ (ppm)		Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water	65	116	52	7.5	7.8	6.7	80	120	75	70	450	40
Finished water	40	72	32	8.6	9.0	8.0	90	160	70			

JEFFERSON PARISH

Ownership: East Jefferson Water District 1; supplies Harahan, Kenner, Metairie, Shrewsbury, Southport, and other communities. Total population supplied, about 62,000.

Source: Mississippi River. Emergency supply can be obtained from the New Orleans public supply.

Treatment: Plain sedimentation, softening with lime, coagulation with lime and iron salts, ammoniation, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 10,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 3,500,000 gal.

The treatment plant for East Jefferson Water District 1 is at Shrewsbury.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		i i		2 002 (0))	
		Finished		Raw	Finished
	water	water		water	water
Silica (SiO ₂)		12	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 03	Total	156	
Manganese (Mn)		. 00	Noncarbonate	38	48
Calcium (Ca)	41	21			
Magnesium (Mg)	13	5.5	Color		
Sodium (Na)	21	21	pH	7.7	8.9
Potassium (K)		2.0	Specific conductance		
Carbonate (CO ₃)	0	5	(micromhos at		
Bicarbonate (HCO ₃)	144	23	25 C.)	400	279
Sulfate (SO ₄)	41	56	Turbidity		
Chloride (Cl)	26	27	Temperature (F.)		
Fluoride (F)	. 3	.2	Date of collection	Oct. 12,	
Nitrate (NO ₃)	3.0	2.0		1951	1951
Dissolved solids	234	163			

Regular determinations at treatment plant

	Alkalinity as CaCO ₃ (ppm)							Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min	
Raw water Finished water		165 43	67 23		8.2 10	7. 5 9. 8		 116	 79	500 0	1600 0	45 0	

LAFAYETTE (Population, 33, 541)

Ownership: Municipal,

Source: 5 wells (U.S.G.S. wells Lf-1, Lf-433, Lf-491, Lf-492, and Lf-503), 220, 204, 214, 213, and 212 ft deep. The total yield of the wells is reported to be

from 1,500 to 2,000 gpm.

Treatment: Aeration (trays), coagulation with sodium aluminate, softening with lime, sedimentation, addition of polyphosphate (Calgon) for stabilization, rapid (anthrafilt) filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Surface storage, 1,000,000 gal; elevated tank, 500,000 gal.

> ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

()	1	F	on, by o. b. deologica		
	Well Lf-491	Finished water		Well Lf-491	Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	3.6	37 . 15 . 1	Hardness as CaCO ₃ : Total Noncarbonate	123 0	95 6
Calcium (Ca) Magnesium (Mg)	36 8.0	27 6.8	Color	0	0
Sodium (Na) Potassium (K)	9.8	9.7 2.0	pHSpecific conductance	7.0	8.9
Carbonate (CO ₃)	0	19	(micromhos at	070	950
Bicarbonate (HCO ₃) Sulfate (SO ₄)	9. 3	77 10	25 C.)	278	258
Chloride (Cl) Fluoride (F)		12	Temperature (F.) Date of collection	Oct. 25.	Apr. 5,
Nitrate (NO ₃) Dissolved solids	.0	161		1949	1951
Depth (feet)				214 24-16-10 1949	

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			pН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		 		6.9 9.5		- -	133 85			0 0	 	

LAKE CHARLES (Population, 41, 272)

Ownership: Gulf States Utilities Co.

Source: 5 wells ("A", "K". "L", "M", and "N") for regular supply; Calcasieu Lake for auxiliary supply. The depths of the wells are reported to be 693, 680, 696, 690, and 676 ft, and the yields, 1,500, 1,500, 1,500, 1,760, and 1,590 gpm, respectively.

Treatment: Aeration (contact beds), softening, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd. Raw-water storage: None (except Calcasieu Lake).

Finished-water storage: 1,500,000 gal.

LAKE CHARLES--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(111141) 505)	THE POST OF	PC	on, by C. b. debrogies		
	Well "L"	Finished water		Well "L"	Finished water
Silica (SiO ₂)	50	48	Hardness as CaCO ₃ :		1
Iron (Fe)	1.6	. 04	Total	108	109
Manganese (Mn)			Noncarbonate	0	0
Calcium (Ca)	27	28			
Magnesium (Mg)	9.7	9.5	Color ·····	10	
Sodium (Na)	80	77	рН	7.1	7.7
Potassium (K)	6.4	5.6	Specific conductance		1
Carbonate (CO ₃)		0	(micromhos at		
Bicarbonate (HCO ₃)	170	160	25 C.)	580	594
Sulfate (SO ₄)	2.4	2.6	Turbidity		
Chloride (Cl)	99	105	Temperature (F.)	73	74
Fluoride (F)		.5	Date of collection	Oct. 25,	Apr. 6,
Nitrate (NO ₃)	.0	. 2		1949	1951
Dissolved solids	359	348			
Denth (feet)	•			696	
				16-10	1
Date drilled				1946	

MONROE

(Population, 38, 572)

Ownership: Municipal; supplies approximately 5,000 people outside of the city limits. Total population supplied, about 43,600.

Source: Bayou De Siard for regular supply; Ouachita River for auxiliary or emergency supply.

Treatment: Prechlorination, aeration (spray), coagulation with alum, sedimentation, addition of soda ash for pH control, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 9,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 3,000,000 gal.

At the time of the collection of the samples lime instead of soda ash was being used for ρH control in the treatment process.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Allaryses,	m parts	per mini	on, by U. S. Geologica	u Survey)	
	Ba you De Siard ^a	Finished water		Bay ou De Siard ^a	Finished water
Silica (SiO ₂)	0.8	0.5	Hardness as CaCO ₃ :		
Iron (Fe)		. 04	Total	19	36
Manganese (Mn)	.00	.00	Noncarbonate	0	20
Calcium (Ca)		11			
Magnesium (Mg)		2.1	Color		
Sodium (Na)		7.7	рН	6. 7	7.0
Potassium (K)			Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	27	20	25 C.)	81	130
Sulfate (SO ₄)	3. 1	16	Turbidity		
Chloride (Cl)		16	Temperature (F.)	76	76
Fluoride (F)	. 3	.2	Date of collection	May 1,	May 1,
Nitrate (NO ₃)	1.5	.5		1951	1951
Dissolved solids	51	75			

aRaw water.

NEW IBERIA (Population, 16,467)

Ownership: Central-Louisiana Electric Co.

Source: 4 wells (U.S.G.S. wells I-1, I-12, I-18, and I-63) for regular supply; Bayou Teche, auxiliary or emergency supply. The depths of the wells are reported to be 290, 250, 278, and 288 ft; and the yields (well I-1, not reported), 1,800, 1,000, and 1,760 gpm, respectively.

Treatment: Aeration (cascades), softening with lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,850,000 gpd.

Raw-water storage: None.

Finished-water storage: 500,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well I1	Finished water		Well I-1	Finished water
Silica (SiO ₂)		36	Hardness as CaCO ₃ :		
Iron (Fe)		. 24	Total	395	151
Manganese (Mn)		i i	Noncarbonate	0	0
Calcium (Ca)	9 9	16			
Magnesium (Mg)	36	27	Color	10	5
Sodium (Na)	2 0	26	pH	7. 2	7.6
Potassium (K)	12	1.6	Specific conductance	ļ	ţ
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO.)	540	216	25 C.)	785	391
Sulfate (SO ₄)	. 5	.5	Turbidity]	
Chloride (Cl)	8.5	13	Temperature (F.)	74	
Fluoride (F)		.2	Date of collection	Oct. 19,	Mar. 19,
Nitrate (NO ₃)	. 0	10		1950	1951
Dissolved solids	476	231			
Depth (feet)				290	
Diameter (inches)				12-10	
Date drilled			***************************************		
Percent of supply	•••••	••••••			

NEW ORLEANS (Population, 570, 445)

Ownership: Municipal.

Source: Mississippi River. Auxiliary and emergency supplies can be obtained from Jefferson Parish, East Jefferson Water District 1.

Treatment: Carrollton Plant, plain sedimentation, softening with lime, sedimentation, activated carbon at times for taste and odor control, coagulation with ferrous sulfate, sedimentation, ammoniation, polyphosphates for stabilization, chlorination, rapid sand filtration, postchlorination, and addition of activated carbon when required.

Algiers Plant, prechlorination, coagulation with ferrous sulfate, softening with lime, sedimentation, ammoniation, rapid sand filtration, postchlorination, and addition of activated carbon for taste and odor control when required.

Rated capacity of treatment plants: Carrollton Plant, 112,000,000 gpd; Algiers Plant, 7,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Carrollton Plant, 15,000,000 gal; Algiers Plant, 7,000,000 gal.

NEW ORLEANS--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water ^a	Finished water a	Raw water b	Finished water b
Silica (SiO ₂)	10	12	10	10
Iron (Fe)	. 36	. 08	. 17	. 03
Manganese (Mn)	.00	.00	.00	.00
Calcium (Ca)	47	. 16	48	20
Magnesium (Mg)		8.1	14	8.3
Sodium (Na)	21	21	21	20
Potassium (K)	. 8	.8	. 8	.8
Carbonate (CO ₃)	0	0	0	6
Bicarbonate (HCO ₃)		37	162	24
Sulfate (SO_4)	51	52	51	58
Chloride (Cl)	24	26	24	27
Fluoride (F)	.3	. 2	.3	.3
Nitrate (NO ₃)	2.5	2.0	2.0	2.0
Dissolved solids	262	158	266	166
Hardness as CaCO ₃ :				
Total	175	73	177	84
Noncarbonate	43	43	45	54
. .				
Color				
pH	7.5	7. 1	7.5	8.8
Specific conductance				
(micromhos at 25 C.)	438	270	439	285
Turbidity				
Temperature (F.)				
Date of collection	Aug. 31,	Aug. 31,	Aug. 31,	Aug. 31,
	1951	1951	1951	l 1951

Regular determinations at treatment plant, 1950 a

	Alkalinity as CaCO ₃ (ppm)				рН	pH Hardness as CaCO (ppm)			O ₃	Turbidity		
	Αv	Max	Min	Av	Max	Min	A٧	Max	Min	Αv	Max	Min
Raw water Finished water		135 52	61 27	8. 1 10. 1	1	7. 9 9. 5	1	200 109	88 54	535 . 1	1770 1. 2	

aCarrollton Plant.

OPELOUSAS (Population, 11,659)

Ownership: Municipal.

Source: 4 wells (U. S. G. S. S1-2, S1-89, S1-122, and S1-123) 326, 288, 326, and 326 ft deep. The yield of the wells is reported to be 1,800, 1,500, 2,000, and 2,300 gpm.

Treatment: Aeration (contact bed of coke), softening with lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 950,000 gal.

bAlgiers Plant.

OPELOUSAS--Continued

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Well S1-122	Finished water		Well S1-122	Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	1.1	34 . 06 . 00	Hardness as CaCO ₃ : Total Noncarbonate	245 0	102 0
Calcium (Ca)	22 22 8. 8	13 17 26 2: 0	Color	5 7.4	0 8. 6
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	339 . 5 13	7 154 2.9 12	(micromhos at 25 C.)	552 70	292 69
Fluoride (F)	. 2	.1 .2 178	Date of collection	June 15, 1950	Apr. 2, 1951
Diameter (inches) Date drilled	· · · · · · · · · · · · · · · · · · ·			326 10 1942 	

RUSTON (Population, 10,372)

Ownership: Municipal; also supplies about 250 people outside the city limits.

Total population supplied, about 10,600.

Source: 2 wells (U. S. G. S. L-1 and L-2) each 637 ft deep, and each reported to yield 750 gpm. An emergency supply can be obtained from a well at Louisiana Polytechnic Institute.

Treatment: None. Storage: 1,500,000 gal.

> **ANALYSIS** (Analysis, in parts per million, by U. S. Geological Survey)

	Well L-1		Well L-1
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	23	Hardness as CaCO ₃ : Total Noncarbonate	6
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	1.6 .5 69 3.2 0 163 13 8.0 .1 .5	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	305 76 Apr. 4, 1951
Diameter (inches)	······································		637 16-10 1936

LOUISIANA 223

SHREVEPORT (Population, 127, 206)

Ownership: Municipal; supplies Bossier City, and approximately 27,000 people outside of the city limits, including Barksdale Field. Total population supplied, about 169,700.

Source: Cross Lake.

Treatment: (Both plants) addition of lime, ammoniation, coagulation with alum,

sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plants: Cross Lake Plant, 15,000,000 gpd; McNeill St. Plant, 14,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 6,000,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw watera	Finished water ^a		Raw watera	Finished water ^a
Silica (SiO ₂)	7.8	7.4	Hardness as CaCO,:		
Iron (Fe)		. 06	Total	48	68
Manganese (Mn)	.00	.00	Noncarbonate	24	35
Calcium (Ca)	10	18			
Magnesium (Mg)	5.7	5.6	Color		
Sodium (Na)	23	23	pH	6.9	7.1
Potassium (K)	2.0	3.2	Specific conductance		
·Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO _s)	30	40	25 C.)	230	270
Sulfate (SO ₄)	25	33	Turbidity		
Chloride (Cl)	36	41	Temperature (F.)	73	74
Fluoride (F)		.1	Date of collection	May 3,	May 3,
Nitrate (NO ₃)	1.0	.0		1951	1951
Dissolved solids	133	162			1

Regular determinations at treatment plant

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		30 38	7 27	6. 6 9. 0	7.5 9.5	6. 0 8. 5	38 63	42 68	33 60	17 0	35 0	9 0

aCross Lake Plant.

WEST MONROE (Population, 10,302)

Ownership: Municipal; also supplies about 2,500 people outside the city limits. Total population supplied, about 12,800.
Source: 3 wells (U. S. G. S. Ou-63, Ou-64, and Ou-135) 473, 473, and 480 ft

deep; each reported to yield 800 gpm.

Treatment: None. Storage: 100,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Well Ou-63		Well Ou-63
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 00 . 00	Hardness as CaCO ₃ : Total Noncarbonate	2 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	.4 .2 123 2.4 5 283 .2 19 .2 .5	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	502 72 Apr. 4, 1951
Depth (feet)	473 16-8 1932		

ALBERT LEA (Population, 13,545)

Ownership: Municipal; also supplies about 500 people outside the city limits. Total population supplied, about 14,000.

Source: 2 wells, 400 and 600 ft deep; tie-in with Wilson Co. for auxiliary supply. The yield of the wells is reported to be 1,750 and 1,250 gpm.

Treatment: Chlorination, addition of sodium metaphosphate (Nalco-18) for water stabilization after the water leaves the storage reservoirs.

Raw-water storage: None.

Finished-water storage: Reservoirs, 2,500,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	25 1.0 .01	Hardness as CaCO ₃ : Total Noncarbonate	350 5
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	92 29 12 1.8	Color	3 7.6
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	421 20 5.5 .1 2.1 404	25 C.) Turbidity Temperature (F.) Date of collection	645 2 48 May 8, 1951
Depth (feet)	400, 600 12 100		

AUSTIN (Population, 23, 100)

Ownership: Municipal.

Source: Sargeant Springs, 50 percent of supply; 1 well, 112 ft deep, 50 percent of supply. The yield for Sargeant Springs is reported to be 2, 200 gpm, and for the well, 1, 940 gpm.

Treatment: Chlorination. Fluoridation of the supply has been proposed.

Raw-water storage: None.

Finished-water storage: Reservoir, 2, 186,000 gal; elevated storage, 750,000 gal.

AUSTIN--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	15	Hardness as CaCO ₃ :	
Iron (Fe)	.12	Total	236
Manganese (Mn)	.00	Noncarbonate	12
Calcium (Ca)	59	· · · · · · · · · · · · · · · · · · ·	
Magnesium (Mg)	22	Color	1
Sodium (Na)	4.2	pH	7.8
Potassium (K)	1.0	Specific conductance	
Carbonate (CO _s)	0	(micromhos at	
Bicarbonate (HCO ₂)	274	25 C.)	446
Sulfate (SO ₄)	13	Turbidity	0.6
Chloride (Cl)	3.0	Temperature (F.)	
Fluoride (F)	. 2	Date of collection	May 8,
Nitrate (NO ₃)	3.5		1951
Dissolved solids	256		

BEMIDJI (Population, 10,001)

Ownership: Municipal; total population supplied, about 5,000. Only part of the population is supplied by the city; the remainder is supplied from private wells. Source: 5 wells, (7, 9, 10, 12, and 14) 187, 87, 250, 108, and 98 ft deep. The yield of the wells is reported to be 550, 410, 600, 550, and 440 gpm.

Treatment: Chlorination when necessary.

Raw-water storage: None.

Finished-water storage: 500,000 gal.

(Analysis, in parts per million, by U. S. Geological Survey)

ANALYSIS

(Analysis, in parts per million, by 0. S. Geological Survey)								
	Finished water (composite) ^a		Finished water (composite) a					
Silica (SiO ₂)	21 . 25 . 00	Hardness as CaCO ₃ : Total Noncarbonate	201 0					
Calcium (Ca)	52 17 9.5 .6	pH	7.7					
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	263 2.0 .5 0 6.5	25 C.)	389 1 46 May 2, 1951					
Dabboarou Bollub	240	1	1					

a Wells 7, 10, and 12.

BRAINERD (Population, 12,637)

Ownership: Municipal.

Source: 4 wells (3 to 6), 120, 120, 145, and 150 ft deep. The yield of the wells is reported to be 1,200, 1,200, 2,400, and 2,500 gpm. Two wells are pumped at one time into reservoir and tower storage and then into the mains.

Treatment: Iron and manganese removal by upward flow of water through beds of manganese ore, aeration and percolation through beds of coke, and rapid sand filtration.

Rated capacity of treatment plant: 3,300,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoir, 800,000 gal; tower, 300,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells 3 and 6 (finished water)	·	Wells 3 and 6 (finished water)
Silica (SiO ₂) Iron (Fe)	20	Hardness as CaCO ₃ : Total	229
Manganese (Mn)	.00	Noncarbonate	21
Calcium (Ca)	66 16	Color	3
Sodium (Na) Potassium (K)	9. 5 . 5	pHSpecific conductance	7.6
Carbonate (CO_3) Bicarbonate (HCO_3)	0 254	(micromhos at 25 C.)	439
Sulfate (SO ₄)	29	Turbidity	0. 2
Chloride (Cl)	5.5 .0	Temperature (F.) Date of collection	47 May 2,
Nitrate (NO ₃) Dissolved solids	4.4 288		1951
Depth (feet) Diameter (inches)	120, 150 16, 16 1939, 1947		
Percent of supply			

DULUTH (Population, 104, 511)

Ownership: Municipal; also supplies about 2,700 people in Proctor. Total population supplied, about 107,200.

Source: Lake Superior for regular supply; Fond du Lac wells for auxiliary supply. Treatment: Prechlorination, detention 4 hours, postchlorination, and ammoniation.

Rated capacity of treatment plant: 30,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoirs, tanks, and standpipes, 55,380,000 gal.

DULUTH--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Lake Superior (finished water)		Lake Superior (finished water)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca)	3. 3 . 15 . 00	Hardness as CaCO ₃ : Total Noncarbonate	44 3
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₉)	14 2.2 1.1· .4	Color	7.4
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	50 1.0 3.5 .1 1.6	25 C.)	102 C. 9 35 May 3, 1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water	 43	 44	42	7.6		 - -	46	47	 45	0.35	13	0

EDINA (Population, 9,744)

Ownership: Municipal.

Source: 4 wells (1 to 4) 400, 450, 475, and 500 ft deep. The yield of the wells is

reported to be 700, 1,000, 1,000, and 1,000 gpm.

Treatment: None.

Storage: Elevated tank, 75,000 gal.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Wells (city tap)		Wells (city tap)
Silica (SiO ₂)	18 . 52 . 00	Hardness as CaCO ₃ : Total Noncarbonate	288 1 4
Calcium (Ca)	70 28 3.9 1.8	Color pH Specific conductance (micromhos at	5 7.8
Bicarbonate (HCO ₈) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	335 8.0 6.0	25 C.)	536 7 53 May 31,
Nitrate (NO ₃) Dissolved solids	1.9 310		1951

FARIBAULT (Population, 16,028)

Ownership: Municipal.

Source: 3 wells (1 to 3), 750, 450, and 1,385 ft deep. The yield of the wells is reported to be 2,400, 2,400, and 1,360 gpm.

Treatment: Chlorination and aeration. Raw-water storage: None.

Finished-water storage: 4,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	, , ,	J.
Finished water (composite)		Finished water (composite)
14	Hardness as CaCO ₃ :	
. 70	Total	348
. 02	Noncarbonate	18
88		
31	Color	2
9.0	pH	7.7
2.0	Specific conductance	
0	(micromhos at	
403		642
33	Turbidity	1
. 4.0	Temperature (F.)	48
.1	Date of collection	May 7,
4.4	Į.	1951
376		
	water (composite) 14	Water (composite)

FERGUS FALLS (Population, 12, 917)

Ownership: Municipal; also supplies 2,000 people outside the city limits. Total population supplied, about 14, 900.

Source: Otter Tail River.

Treatment: Softening with lime, coagulation with ferric sulfate and sodium aluminate, slow mechanical mixing and sludge blanket clarification, recarbonation, carbon when needed, fluoridation with sodium silicofluoride, rapid sand filtration, ammoniation, chlorination, and stabilization with polyphosphate.

Rated capacity of treatment plant: 3,500,000 gpu.

Raw-water storage: Lake.

Finished-water storage: 700,000 gal (additional storage of 1,500,000 gal is planned for in 1951).

FERGUS FALLS--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	9.8	7.1	Hardness as CaCO ₃ :	170	75
Iron (Fe)	. 0-		Total	176	75
Manganese (Mn)		. 00	Noncarbonate	1	0
Calcium (Ca)		9.0			
Magnesium (Mg)	24	13	Color	4	2
Sodium (Na)	5. 2	6.5	pH	7.9	9. 2
Potassium (K)	3. 1	2.9	Specific conductance		
Carbonate (CO ₂)		13	(micromhos at		
Bicarbonate (HCO _s)	214	65	25 C.)	345	179
Sulfate (SO ₄)	11	10	Turbidity	2	2
Chloride (Cl)	1.5	3.5	Temperature (F.)	68	68
Fluoride (F)	.1	1.2	Date of collection	May 25,	May 25,
Nitrate (NO ₃)	1.0	.4		1951	1951
Dissolved solids		118			ļ

Regular determinations at treatment plant, 1951 a

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		220 70		8. 0 9. 2	8. 1 9. 2	7. 9 9. 2	213 63	220 66	180 61	2 0	5 0	0 0

a Fiscal year (Apr. 1, 1950 to Mar. 31, 1951).

HIBBING

(Population, 16, 276)

Ownership: Municipal; also supplies about 3,000 people outside the city limits. Total population supplied, about 19,300.

Source: Mine shaft, 50 percent of supply; 7 wells (1-A, 2-A, 3-A, 4, 8-A, 9, and 12), 112, 118, 148, 88, 135, 182, and 138 ft deep, 50 percent of supply. The yield of the wells is reported to be 700, 500, 700, 300, 700, 450, and 450 gpm. All the wells are connected to a 1,000,000 gal reservoir at the main pumping station.

Treatment: Chlorination of water from mine shaft.

Raw-water storage: None.

Finished-water storage: Underground storage, 4,000,000 gal; elevated tank, 650,000 gal.

HIBBING--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂) Iron (Fe)	15	Hardness as CaCO ₃ : Total	132
Manganese (Mn)	. 08 . 01 28	Noncarbonate	17
Calcium (Ca)	28 15	Color	2
Sodium (Na)	5.6	рН	7. 0
Potassium (K) Carbonate (CO_s)	.6	Specific conductance (micromhos at	
Bicarbonate (HCO ₃)	140	25 C.)	274
Sulfate (SO_4)	19 8.0	Turbidity Temperature (F.)	0. 8 45
Fluoride (F)	.1	Date of collection	May 3,
Nitrate (NO ₃) Dissolved solids	168		1951

MANKATO (Population, 18,809)

Ownership: Municipal; also supplies about 200 people outside the city limits. Total population supplied, about 19,000.

Source: 6 wells (5 to 10), 68, 325, 65, 68, and 67 ft deep (depth not reported for well 10). The yield of the wells is reported to be 600, 500 (flow), 700, 600, 1,500, and 1,700 gpm.

Treatment: Prechlorination, from removal by aeration and contact beds of manganese ore and coke, and rapid sand filtration.

Rated capacity of treatment plant: 4,500,000 gpd.

Raw-water storage: None.

Finished-water storage: High tower, 250,000 gal; concrete reservoir, 3,500,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water composite a b		Finished water composite a b
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	20 2. 2 . 00	Hardness as CaCO _g : Total Noncarbonate	324 83
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	77 32 22 4.7	Color	5 8. 0
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	294 107 11 . 1 4. 4	25 C.) Turbidity Temperature (F.) Date of collection	714 9 50 May 31, 1951
Dissolved solids	462		

^a Chlorination only. Treatment plant out of service for repairs at time of collection of sample.

b Wells 5, 8, and 9.

MINNEAPOLIS (Population, 521,718)

Ownership: Municipal; also supplies about 11,000 people outside the city limits and about 3,700 at other places. Total population supplied, about 536,400.

Source: Mississippi River.

Treatment: Prechlorination, softening with lime and soda ash, coagulation with ferrous sulfate, and Ferrifloc as required, clarification stabilization with alum, carbon dioxide or Ferrifloc or a combination of these as required, rapid sand filtration, postchlorination, and ammoniation.

Rated capacity of treatment plants: Fridley softening plant, 100,000,000 gpd; Columbia Heights filtration plant, 78,000,000 gpd; Fridley filtration plant, 80,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 61,000,000 gal.

The public supply of Minneapolis is obtained from the Mississippi River at the Fridley pumping station No. 5 located north of the city proper. After the water is softened at the Fridley water-softening plant it is divided for filtration. Centrifugal pumps deliver part of the water to the Columbia Heights filtration plant from which (after filtration and sterilization) the finished water is supplied to the city by gravity from the covered finished-water reservoir. The other portion is pumped by low service pumps to the Fridley filtration plant from which the finished water is pumped directly into the mains from the covered reservoir. The western half of the city is supplied by direct pumping into the mains and the balance is served by gravity. The Columbia Heights plant generally serves the entire city from midnight to 5 o'clock in the morning.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	10 . 04 . 00		Hardness as CaCO ₃ : Total Noncarbonate	148 13	1
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	40 12 3.6	20 4.4 4.2 2.3	ColorpHSpecific conductance	47 7. 9	7
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (CI)	0 165 18	0 30 44	(micromhos at 25 C.)	296 5 69	0.9
Fluoride (F) Nitrate (NO ₂) Dissolved solids	1.0 .1 2.0 198	8.0 .1 .9	Date of collection	May 29, 1951	May 29, 1951

Regular determinations at treatment plant, 1950

	as	kalini CaC((ppm)	O ₃	pН		Hardness as CaCO ₃ (ppm)		Turbidity				
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	151 42	196 58	95 18	8. 1 8. 0	8.7 8.6	7.5 7.4	163 77		142 74	9.6 .3	90 2. 2	2 0

MOORHEAD (Population, 14,870)

Ownership: Municipal.

Source: 5 wells (5 to 9), 265, 265, 116, 116, and 116 ft deep. The yield of the

wells is reported to be 500, 500, 200, 1,400, and 1,400 gpm.

Treatment: Softening with lime, coagulation with ferric sulfate, sedimentation,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,800,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 5 (raw water)	Well 9 (raw water)	Wells 5 & 9 (finished water)
Silica (SiO ₂)	28	27	20
Iron (Fe)	. 63	. 26	. 14
Manganese (Mn)	.00	. 04	.00
Calcium (Ca) ······	55	70	22
Magnesium (Mg)	13	26	8, 3
Sodium (Na)	155	74	100
Potassium (K)	5.0	5. 5	4.9
Carbonate (CO ₃)	0	0	10
Bicarbonate (HCO ₃)	329	380	142
Sulfate (SO ₄)	144	104	121
Chloride (Cl)	74	14	32
Fluoride (F)	. 2	. 2	. 2
Nitrate (NO ₃)	3,8	3.3	3. 4
Dissolved solids	644	518	396
Hardness as CaCO ₃ :			
Total	189	280	89
Noncarbonate	00	0	0
Color	4	3	2
pH	7. 7	7.6	8.7
Specific conductance	···		""
(micromhos at 25 C.)	1,010	801	616
Turbidity	2	1	1
Temperature (F.)	48	45	49
Date of collection	May 25, 1951	May 25, 1951	May 25, 1951
Depth (feet)	265	116	
Diameter (inches)	1	12	
Date drilled		1947	
Percent of supply			

OWATONNA (Population, 10, 191)

Ownership: Municipal.

Source: 3 wells (1 to 3) each 710 ft deep. The yield of the wells is reported to be 1,300, 1,600, and 1,000 gpm.

Treatment: Aeration, and hand application of chlorine when necessary.

Raw-water storage: None.

Finished-water storage: 625,000 gal.

OWATONNA -- Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Well 2 (finished water)		Well 2 (finished water)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	12 .33 .00 70 22 6.2 1.3 0 296 29 3.0 .1 6.1	Hardness as CaCO ₃ : Total Noncarbonate Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	266 24 2 7.6 492 2 50 May 7, 1951
Depth (feet) Diameter (inches) Date drilled Percent of supply	710 16 1945		

RED WING (Population, 10,645)

Ownership: Municipal.

Source: 4 wells (Sta. 1, well 3; Sta. 3, well 1; well 2; and well, East 8th St.) 460, 770, 480, and 620 ft deep. The yield of the wells is reported to be 1,150,

1,500, 1,300 and 1,050 gpm.

Treatment: Aeration.

Raw-water storage: None.

Finished-water storage: Elevated tank, 1,200,000 gal; 2 reservoirs, 750,000

and 1,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

For unitation	7	37
Finished water		Finished water
11 .39 .00	Hardness as CaCO ₃ : Total Noncarbonate	254 6
28 52 5.3	Color	7.7
302 25 72 .1 4.1	25 C.)	711 3 48 May 4, 1951
	Finished water 11 .39 .00 56 28 52 5.3 0 302 25 72 .1	Water

ROBBINSDALE (Population, 11, 289)

Ownership: Municipal.

Source: 3 wells (1 to 3) about 630 ft deep, for main supply; broken connection to Minneapolis supply for auxiliary supply. The yield of the wells is reported to be 900, 1,050, and 1,200 gpm. One pump operates during the winter months; two pumps operate continuously and a third operates intermittently during the day in the summer months. The water is pumped directly into the mains.

Treatment: Chlorination and sodium phosphate for water stabilization.

Raw-water storage: None.

Finished-water storage: Auxiliary supply, elevated storage, 150,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(on, by c. b. deologica		
	Well 2	Well 3		Well 2	Well 3
	(finished	(finished	1	(finished	(finished
	water)	water)		water)	water)
		,			
Silica (Si O_2)		20	Hardness as CaCO ₃ :		
Iron (Fe)	. 22	. 08	Total	366	360
Manganese (Mn)	.00	.00	Noncarbonate	11	11
Calcium (Ca)	75	76			
Magnesium (Mg)		41	Color	5	3
Sodium (Na)	5.8	4.8	p H	7.7	7.7
Potassium (K)		2.4	Specific conductance	1	1
Carbonate (CO ₃)		0	(micromhos at		
Bicarbonate (HCO ₃)	433	426	25 C.)	680	653
Sulfate (SO_4)	16	12	Turbidity	3	2
Chloride (Cl)		6.0	Temperature (F.)	52	52
Fluoride (F)	.1	.1	Date of collection	May 29,	May 29,
Nitrate (NO ₃)	. 9	.4		1951	1951
Dissolved solids	^a 386	a 373			
	-			630	
Diamotor (inches)	•••••	• • • • • • • • • • • • •	•••••		
Diameter (inches)	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	18	24-20
Date drilled	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	***************************************		1949
Percent of supply		•••••	•••••		

a Sum of determined constituents.

ROCHESTER (Population, 29,885)

Ownership: Municipal.

Source: 11 wells (2 to 11), 430 to 510 ft deep. The yield of the wells is reported

to range from 190 to 1, 100 gpm.

Treatment: None (chlorination planned to be started in June 1951).

Storage: 2,400,000 gal.

ROCHESTER--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells (composite)		Wells (composite)
Silica (SiO ₂)	. 15 . 00	Hardness as CaCO ₃ : Total Noncarbonate	260 20
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃)	70 21 3.7 1.6 0	Color	1 7. 7 477
Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	232 23 5.0 .1 4.1 288	Turbidity Temperature (F.) Date of collection	1 52 May 7, 1951

ST. CLOUD (Population, 28,410)

Ownership: Municipal. Source: Mississippi River.

Treatment: Prechlorination, ammoniation, coagulation with alum, activated car-

bon, sedimentation, and rapid sand filtration. Rated capacity of treatment plant: 3,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,500,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	6. 0 . 04	Hardness as CaCO ₃ : Total	134 51
Manganese (Mn) Calcium (Ca)	. 00 35	Noncarbonate	91
Magnesium (Mg)	11	Color	4
Sodium (Na) Potassium (K)	3.6 2.1	pH Specific conductance	7. 0
Carbonate (CO _s)	0	(micromhos at	20-
Bicarbonate (HCO ₃)	101	25 C.)	287
Sulfate (SO ₄)	53	Turbidity	1
Chloride (Cl)	4.5	Temperature (F.)	55
Fluoride (F)	. 0·	Date of collection	May 1,
Nitrate (NO ₃)	.8		1951
Dissolved solids	190		

MINNESOTA

ST. LOUIS PARK (Population, 22,644)

Ownership: Municipal.

Source: 6 wells (1 to 6). Wells 1, 2, and 3 are 290 ft deep; wells 4, 5, and 6 are 500 ft deep. The yield of the wells is reported to be as follows: Wells 1 and 2, 930 gpm, each; wells 3, 4, 5, and 6, 1, 200 gpm, each.

Treatment: Chlorination, polyphosphate for stabilization, and aeration in surface storage tank.

Raw-water storage: None.

Finished-water storage: Elevated tank, 1,600,000 gal; steel surface tank, 1,500,000 gal.

Continuous problem with "Crenothrix". Water is pumped directly into mains. The iron content is reported to vary from 0.8 to 3.4 ppm.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		1	on, by o. o. decorogress			
	Well 3	Well 4		Well 3	Well 4	
	(finished	(finished		(finished	(finished	
	water)	water)		water)	water)	
Silica (SiO ₂)	20	17	Hardness as CaCO ₃ :			
Iron (Fe)	. 18	. 65	Total	334	290	
		. 02	Noncarbonate	72	13	
Calcium (Ca)	81	73				
Magnesium (Mg)	32	26	Color	5	4	
Sodium (Na)	3.6	4.0	pH	8.0	8.1	
Potassium (K)	1.7	1.7	Specific conductance			
Carbonate (CO ₃)	0	0	(micromhos at			
Bicarbonate (HCO ₂)	320	33 8	25 C.)	620	537	
Sulfate (SO ₄)	52	13	Turbidity	2	10	
Chloride (Cl)	16	6.5	Temperature (F.)			
Fluoride (F)	.1	,1	Date of collection		, ,	
Nitrate (NO ₃)	7.3	1.4		1951	1951	
Dissolved solids	432	30 8				
Total Salar Sala						
					500 18	
				1939	1946	
Percent of supply	••••••		••••••			

ST. PAUL (Population, 311, 349)

Ownership: Municipal; also supplies 10,000 people outside the city limits. Total population supplied, about 325,000.

Source: Mississippi River and watershed of impounding lakes for regular supply; Centerville Lakes System for auxiliary supply. The principal impounding reservoirs of the present water-supply system are lakes Vadnais, Pleasant, Otter, Charles, and Sucker. Water storage in the Vadnais impounding system may be augmented from two principal sources: water pumped from the Centerville Lake system, which consists of four principal lakes and lies 18 to 20 miles north of the city; water pumped from the Mississippi River to the Vadnais storage reservoir through Charles and Pleasant Lakes.

Treatment: Aeration, coagulation with alum, softening with lime, recarbonation, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 70,000,000 gpd.

Raw-water storage: 6,750,000,000 gal. Finished-water storage: 70,000,000 gal.

ST, PAUL--Continued

Water from Otter Lake and the overflow from Bald Eagle Lake may be taken by gravity into the Vadnais system as a reserve source of supply. During low water stages, however, the water in Otter Lake is highly colored and is seldom used. Two artesian well fields are held in reserve. One field which has 28 wells with an average depth of 400 ft, is located along the shores of Centerville Lake. The other field which has 6 wells ranging in depth from 700 to 1,000 ft is located at McCarron Station.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

			,, ot 2. c. c		
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	. 04 . 00	. 00	Hardness as CaCO ₃ : Total Noncarbonate	149 6	58 10
Calcium (Ca)	13 4, 2 2, 0	21 1.4 4.4 2.1	Color	15 8.1	1
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	174 12 1.0 .1 1.3	59 15 4.5 .1 .8	25 C.)	301 3 64 May 29, 1951	1 67

Regular determinations at treatment plant, 1950

•	as	kalini CaC (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water	148 57		132 42		8.6 8.8	8. 1 8. 5	159 72	179 86	144 56	3 Tr	6 Tr	1 Tr

SOUTH ST. PAUL (Population, 15, 909)

Ownership: Municipal,

Source: 3 wells (2 to 4), 982, 340, and 960 ft deep. The yield of the wells is reported to be 1,200, 1,900, and 2,000 gpm. The water is pumped directly to the mains and to storage.

Treatment: None.

Storage: 2,400,000 gal.

SOUTH ST. PAUL--Continued

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

Total Tota					
	Well 2	Well 3	•	Well 2	Well 3
Silica (SiO ₂)	18	19	Hardness as CaCO ₃ :		_
Iron (Fe)	. 25	. 10	Total	306	337
Manganese (Mn)	. 00			48	77
Calcium (Ca)	76	84			
Magnesium (Mg)	. 28	31	Color	2	2
Sodium (Na)		25	pH	80	7.7
Potassium (K)	2.3	2, 3	Specific conductance		ì
Carbonate (CO.)	0	0	(micromhos at	1	
Bicarbonate (HCO.)	315	317	25 C.)	578	735
Sulfate (SO ₄)	42	53	Turbidity	2	0.8
Chloride (Cl)	7. 5	39		52	51
Fluoride (F)	.1	. 1	Date of collection	May 29.	May 29,
Nitrate (NO.)					1951
Dissolved solids	380	-			
Depth (feet)				982	340
Diameter (inches)	•••••		•••••		
Date drilled	•••••			1923	1937
			• • • • • • • • • • • • • • • • • • • •	1020	1551
					L

VIRGINIA (Population, 12,486)

Ownership: Municipal; also supplies about 800 people outside the city limits. Total population supplied, about 13,300.

Source: Mesabi pit shaft for regular supply; 1 well, 400 ft deep, for auxiliary supply.

Treatment: Softening with lime, coagulation with sodium aluminate, sedimentation, recarbonation, rapid sand (pressure) filtration, stabilization with polyphosphate, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: 500,000 gal. Finished-water storage: 1,200,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Allalyses,	m par to	her miniti	on, by O. D. deologica	L Dui 1037	
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	14	14	Hardness as CaCO3:		
Iron (Fe)		.04	Total	197	75
Manganese (Mn)	.00		Noncarbonate	31	42
Calcium (Ca)	47	30			
Magnesium (Mg)	19	.1	Color ·····	2	1
Sodium (Na)	7.9	20	pH	7.6	10.6
Potassium (K)	1.4	1.3	Specific conductance		
Carbonate (CO.)	0	a 20	(micromhos at		
Bicarbonate (HCO.)	203	0	25 C.)	400	272
Sulfate (SO ₄)	35	35	Turbidity	5	5
Chloride (Cl)	10	12	Temperature (F.)		43
Fluoride (F)	. 1	.1	Date of collection	May 3,	May 3,
Nitrate (NO ₃)	3.4	2.2	1	1951	1951
Dissolved solids		148			

a Hydroxide (OH) 10 ppm.

WILLMAR (Population, 9,410)

Ownership: Municipal.

Source: 1 well (3) 302 ft deep, for regular supply; 2 wells (1 and 2) 314 and 310 ft deep for auxiliary supply. The yield for well 3 is reported to be 1,500 gpm;

well 2, 600 gpm; well 1, not reported.

Treatment: Chlorination, and polyphosphate for water stabilization.

Rated capacity of treatment plant: 1,400,000 gpd.

Raw-water storage: None.

Finished-water storage: Elevated tank, 150,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Well 3 (finished water)		Well 3 (finished water)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	25 1.6 .02 102 51 39 2.9 0 577 77 6.0 .1	Hardness as CaCO ₃ : Total	464 0 6 7.7 942 1 50 May 1, 1951
Depth (feet) Diameter (inches) Date drilled			302 24-20 1949

WINONA (Population, 25,031)

Ownership: Board of Municipal Water Works.

Source: 6 wells (5 to 10), 500, 486, 452, 150, 149, and 150 ft deep. The yield of the wells is reported to be 1,002, 1,110, 840, 900, 1,136, and 1,100 gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: Underground reservoir, 2,000,000 gal; elevated tank,

500,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	14	Hardness as CaCO ₃ :	041
Iron (Fe)	. 59	Total	241
Manganese (Mn)	.05	Noncarbonate	0
Calcium (Ca)	58		
Magnesium (Mg)	23	Color	4
Sodium (Na)	57	pH	7. 7
Potassium (K)	4.8	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	306	25 C.)	69 6
Sulfate (SO ₄)	52	Turbidity	1
Chloride (Cl)	44	Temperature (F.)	50
Fluoride (F)	.4	Date of collection	May 8,
Nitrate (NO ₃)	.8		1951
Dissolved solids	412		

CAPE GIRARDEAU, MISSOURI (Population, 21,578)

Ownership: Missouri Utilities Co.

Source: Mississippi River.

Treatment: Coagulation with lime and ferrous sulfate, sedimentation, rapid sand

filtration, and chlorination.

Rated capacity of treatment plant: 2, 200, 000 gpd.

Raw-water storage: 1,000,000 gal. Finished-water storage: 3,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by Div. of Health of Missouri, Jefferson City, Mo.)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	8. 0 . 08 	Hardness as CaCO ₃ : Total Noncarbonate	240 98
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	63 20 17 0	Color pH Specific conductance (micromhos at	6. 9
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	173 100 20 3.8 364	25 C.)	1.4 Feb. 4, 1952

Regular determinations at treatment plant, 1951

	as	kalini CaC(-	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	<u> </u>	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		142	110	7.3	8.4	7. 0	213	 241	196	0. 2	1.4	0, 1

CARTHAGE

(Population, 11, 188)

Ownership: Municipal. Total population supplied, about 12,000.

Source: 7 deep wells. The depths of wells 1, 2, 5, 6, and 7 are 1,006, 1,000, 1,008, 1,854, and 1,865 ft, respectively.

Treatment: Softening with lime, coagulation with alum, sedimentation, chlorination, and rapid sand filtration.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoir, 1,500,000 gal; elevated, 500,000 gal.

MISSOURI

CARTHAGE--Continued ANALYSIS

(Analysis, in parts per million, by the Division of Health, Jefferson City, Mo.)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	6. 0 . 4 	Hardness as CaCO ₃ : Total Noncarbonate	107 65
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	$egin{array}{c} 23 \\ 12 \\ 24 \\ 6 \end{array}$	Color pH Specific conductance (micromhos at	8. 4
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	38 57 37	25 C.) Turbidity Temperature (F.) Date of collection	0.6 Feb. 11,
Nitrate (NO ₃) Dissolved solids	7.5 246		1952

CLAYTON (Population, 16,035)

Ownership: Supplied by the St. Louis County Water Co. (See University City.)

COLUMBIA (Population, 31, 974)

Ownership: Municipal; also supplies approximately 150 people outside the city limits. Total population supplied, about 32,100.

Source: 4 wells, 1,100 to 1,500 ft deep for regular supply; connection with a limited number of wells at the University of Missouri for auxiliary or emergency supply.

Treatment: Chlorination.

Raw-water storage: 5,000,000 gal. Finished-water storage: 1,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by II. S. Geological Survey)

(Allarysis, Ili par	ts per million	i, by o. s. Geological Surve	<u> </u>
	Wells 1, 5 (city tap)		Wells 1, 5 (city tap)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	9. 0 . 08 . 00	Hardness as CaCO ₃ : Total Noncarbonate	270 0
Calcium (Ca)	58 31 44 6.4 0	Color pH Specific conductance (micromhos at	3 8.2
Bicarbonate (HCO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	368 35 26 1.4 1.0 406	Turbidity Temperature (F.) Date of collection	668 0.7 56 Apr. 16, 1951

FERGUSON

(Population, 11,593)

Ownership: St. Louis County Water Company. (See University City.)

FULTON (Population, 10,052)

Ownership: Municipal; also supplies about 100 people outside the city limits.

Total population supplied, about 10, 150.

Source: 1 well 1,350 ft deep, for regular supply; 1 well at Missouri State Hospital

for emergency or auxiliary supply.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 500,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	8.0 .94 .00	Hardness as CaCO ₃ : Total Noncarbonate	29 4 0
Calcium (Ca)	65 32 37 5.7 0 364 50 20 .1 .5	Color	1 7.8 684 1 Apr. 17, 1951
Diameter (inches)'			1,350 10 1931 100

HANNIBAL (Population, 20, 444)

Ownership: Municipal; also supplies about 1,000 people outside the city limits. Total population supplied, about 21,400.

Source: Mississippi River.

Treatment: Plain sedimentation, coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 7,500,000 gal. Finished-water storage: 7,500,000 gal.

HANNIBAL--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

•	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	6.3 .07 .00	Hardness as CaCO ₃ : Total Noncarbonate	157 77
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	47 9.7 3.2 2.7 0	Color	8 7. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	98 71 6.5 .0 7.9	25 C.)	340 0.9 49 Apr. 12, 1951

Regular determinations at treatment plant, 1950

	as	kalini CaC((ppm)	O ₃	рН			Hardness as CaCO ₃ (ppm)			Turbidity		
,	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Мах	Min
Raw water Finished water		164 150		7.8 7.4	8. 2 7. 9	7. 2 6. 9				315 . 1	2000 . 3	25 0

INDEPENDENCE (Population, 36, 963)

Ownership: Missouri Water Co. -- Independence Division: also supplies about 24,000 people outside the city limits. Total population supplied, about 61,000.

Source: Missouri River. (See Kansas City.) Finished-water storage: Closed surface reservoir, 2,000,000 gal; elevated tank, 600,000 gal; and standpipe, 25,000 gal.

JEFFERSON CITY (Population, 25,099)

Ownership: Capital City Water Company.

Source: Missouri River.

Treatment: Softening with lime, coagulation with iron salts, sedimentation, secondary coagulation with iron salts, activated carbon, chlorination, sedimentation, recarbonation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: 2,000,000 gal.

Finished-water storage: 1,250,000 gal.

The composition of the raw water varies considerably throughout the year.

JEFFERSON CITY--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe)	8. 4 . 12	Hardness as CaCO ₃ :	109
Manganese (Mn)	.00	Noncarbonate	62
Calcium (Ca)	41 1.6	Color	4
Sodium (Na)	27	pH Specific conductance	7.8
Carbonate (CO _s)	3.5 0	(micromhos at	
Bicarbonate (HCO ₃)	57	25 C.)	366
Sulfate (SO ₄)	99	Turbidity	0.6
Chloride (Cl)	15	Temperature (F.)	46
Fluoride (F)	. 2	Date of collection	Apr. 17,
Nitrate (NO ₃)	2.8	1	1951
Dissolved solids	248		

JENNINGS (Population, 15, 282)

Ownership: Supplied by the St. Louis County Water Co. (See University City.)

JOPLIN (Population, 38, 711)

Ownership: Joplin Water Works Co. (private). Total population supplied, about 40,000.

Source: Shoal Creek.

Treatment: Coagulation with alum and lime, carbon when required, sedimentation,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 2, 100, 000 gal. Finished-water storage: 1, 360, 000 gal.

ANALYSIS

Analysis, in parts per million, by Div. of Health of Missouri, Jefferson City, Mo.

Silica (SiO ₂) 6.0 Iron (Fe) .04 Manganese (Mn) Calcium (Ca) 48 Magnesium (Mg) 2.7 Sodium (Na) be the conductance (micromhos at 25 C.) Potassium (K) 146 Carbonate (CO ₃) 9.9 Chloride (Cl) 7.6 Fluoride (F) Date of collection Ju		Finished water		Finished water
Magnesium (Mg) 2.7 Color	ron (Fe)	. 04	Total	131 11
Carbonate (CO ₃) 0 (micromhos at Bicarbonate (HCO ₃) 146 25 C.) Sulfate (SO ₄) 9.9 Turbidity Chloride (Cl) 7.6 Temperature (F.)	Magnesium (Mg) Sodium (Na)	2.7	pH	7.4
Nitrate (NO ₃)	Carbonate (CO ₃)	146 9.9 7.6 5.3	(micromhos at 25 C.) Turbidity	0.1 0.1 June 18, 1951

JOPLIN--Continued

Regular determinations at treatment plant, 1951

	as	kalini CaC (ppm)	O _s	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		120 115		7. 5 7. 5			112	130	100	30 0	3000 0	20 0

KANSAS CITY (Population, 456, 622)

Ownership: Municipal; also supplies Avondale, Grandview, Independence, Lees Summit, Sugar Creek, a number of water districts in Clay and Jackson Counties, and private water companies. Total population supplied, about 689,000.

Source: Missouri River. The intake is located about 4 miles upstream from the city.

Treatment: Plain sedimentation (clarifier-equipped basins), softening with lime and soda ash, clarification and coagulation with ferric sulfate and alum, recarbonation, ammoniation (ammonium sulfate), activated carbon (aqua Nuchar), sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 150,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 52,000,000 gal.

The raw water is pumped from the river to the purification works by the Low Lift Pun.ping Station. From the finished-water reservoirs at the purification site the water is pumped by the Secondary Pumping Station through a tunnel under the Missouri River to reservoirs at the sites of two pumping.stations in the city, Turkey Creek and East Bottoms Pumping Stations. The water is delivered from these reservoirs by these two to pumping station into the city's main distribution system. Turkey Creek Pumping Station is steam operated and handles about two-thirds of the total demand on the distribution system. All others are electrically operated. Repumping is required, during hours of maximum demand in the summer months, in an area in the south and southwest part of the city and in an area to the south of the city limits.

KANSAS CITY--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Finished water	Finished water average a	Raw water average a
Silica (SiO ₂)	11	9.4	12
Iron (Fe)	04		
Manganese (Mn)	.00		
Calcium (Ca) ······	21	23	61
Magnesium (Mg)		6.3	17
Sodium (Na)	66	h .	
Potassium (K)	5.2) 51	41
Carbonate (CO ₃)			
Bicarbonate (HCO _s)	24	b 49	b 192
Sulfate (SO ₄)	159	126	1 2 0
Chloride (Cl)	27	19	19
Fluoride (F)	. 3		
Nitrate (NO ₃)	2.6		
Dissolved solids	346	297	c 365
Hardness as CaCO ₃ :			
Total	86	84	221
Noncarbonate	51	43	64
Color	i e		
pH	8. 7	9.4	8.3
Specific conductance			
(micromhos at 25 C.)			
Turbidity		. 26	2,170
Temperature (F.)	45	54	54
Date of collection	M ar. 2 3, 1951		

Regular determinations at treatment plant, 1951 d

		lkalir s CaC (ppm	O ₃	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water				8.3 9.4		8.2 9.3	221 84	305 91	145 66	2170 . 26	5800 . 6	200 . 1

a Analyzed by Purification Division, Kansas City Water Dept. Composite analyses, May 1950 to Feb. 1951, inclusive.

b Includes the equivalent of any carbonate (CO₃).

KIRKSVILLE (Population, 11,110)

Ownership: Municipal; also supplies about 200 people outside the city limits. Total population supplied, about 11,300.

Source: Chariton River.

Treatment: Softening with lime, coagulation with alum, sedimentation, recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,500,000 gpd. Raw-water storage: Reservoir, 5,000,000 gal.

Finished-water storage: 600,000 gal.

^c Sum of determined constituents. d May 1950 to February 1951.

KIRKSVILLE--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	.04	5.6 .04 .00	Hardness as CaCO ₃ : Total Noncarbonate	119 55	134 82
Calcium (Ca)	7.7 8.5 2.7	51 1.6 6.6 2.6	Color	34 7.8	6 7. 7
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	78 66 2.0 .1	64 83 8.5 .1	25 C.) Turbidity Temperature (F.)	283 320 Apr. 11,	
Nitrate (NO ₃) Dissolved solids		4.2 216		1951	1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO _s (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	A٧	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		250 72			7.6 9.2	 7. 2	190 90			300 0.2	450 0.2	200 0. 2

KIRKWOOD (Population, 18,640)

Ownership: Municipal; also supplies about 500 people outside the city limits. Total population supplied, about 19, 100.

Source: Ranney collector, 53 ft deep and 13 ft in diameter, with valve controlled lateral perforated infiltration pipes along Meramec River.

Treatment: Aeration, softening with quick lime, prechlorination, mechanical flocculation, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,500,000 gal.

KIRKWOOD--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	11	9. 2	Hardness as CaCO ₃ :		
Iron (Fe)	. 03	. 02	Total	267	128
Manganese (Mn)	. 00	. 00	Noncarbonate	71	68
Calcium (Ca)	65	21			
Magnesium (Mg)	26	18	Color	2	2
Sodium (Na)	21	20	рН	7.2	9.5
Potassium (K)	1.8	1.0	Specific conductance		
Carbonate (CO ₂)	0	18	(micromhos at		
Bicarbonate (HCO ₃)	239	36	25 C.)	585	373
Sulfate (SO ₄)	61	65	Turbidity	3	0.2
Chloride (Cl)	41	31	Temperature (F.)	55	56
Fluoride (F)		.1	Date of collection	Apr. 14,	Apr. 14,
Nitrate (NO ₃)	1.3	1.0		1951	1951
Dissolved solids	420	244		1	

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	213 56	217 61	197 50	6. 6 9. 4	1	6. 5 9. 3	279 120	- 1	256 110	1 -	8 . 1	0. 9 . 1

MAPLEWOOD (Population, 13,416)

Ownership: Supplied by the St. Louis County Water Co. (See University City.)

MEXICO (Population, 11,623)

Ownership: Missouri Power and Light Company.

Source: 4 wells (1 to 4) 1,173, 1,208, 1,250, and 1,450 ft deep, 90 percent of supply; impounding reservoir, 10 percent of supply. The yield of the wells is reported to be 310, 1,000, 300, and 750 gpm. Water from the impounding reservoir is only used when the runoff is high.

Treatment: Aeration, addition of lime, alum, and chlorine, sedimentation, recarbonation, and rapid sand filtration.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: Impounding reservoir, 52,000,000 gal. Finished-water storage: Covered reservoir, 600,000 gal.

MISSOURI

MEXICO--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 4 (raw water)	Well 4 (finished water)		Well 4 (raw water)	Well 4 (finished water)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 23 0	0	Hardness as CaCO ₃ : Total Noncarbonate	310 0	125 0
Calcium (Ca) Magnesium (Mg) Sodium (Na)	37 66	12 23 69	ColorpH	4 7.4	3 8. 5
Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃)	0 420	10 7 179	Specific conductance (micromhos at 25 C.)	839	567
Sulfate (SO_4) Chloride (Cl) Fluoride (F)	1.3	65 45 1.2	Turbidity Temperature (F.) Date of collection	1 Apr. 16,	0.5 60 Apr. 16,
Nitrate (NO ₃) Dissolved solids	526	330		1951	1951
Diameter (inches) Date drilled	•••••••	••••••		1,450 12 1949	

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water	334 137	 154	120	7.0 8.2	8.4		317 128	146	111	1 1		

MOBERLY (Population, 13, 115)

Ownership: Municipal; also supplies Huntsville and about 300 consumers outside the city limits. Total population supplied, about 14,900.

Source: Sugar Creek (impounded) for regular supply; Old Water Works Lake for auxiliary or emergency supply.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 2,304,000 gpd. Raw-water storage: Reservoir, 1,145,000,000 gal.

Finished-water storage: 817,000 gal.

MOBERLY--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water a		Finished water ^a
Silica (SiO ₂)	2.7	Hardness as CaCO ₂ : Total	137
Manganese (Mn)	.14	Noncarbonate	55
Calcium (Ca)	43		
Magnesium (Mg)	7. 2	Color	9
Sodium (Na)	5.2	pH	7. 9
Potassium (K)	2.8	Specific conductance	
Carbonate (CO ₂)	0	(micromhos at	
Bicarbonate (HCO ₃)	100	25 C.)	295
Sulfate (SO ₄)	60	Turbidity	6
Chloride (Cl)	5.0	Temperature (F.)	
Fluoride (F)	.1	Date of collection	Apr. 16,
Nitrate (NO _s)	2, 1	1	1951
Dissolved solids	210		

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	A٧	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	- <u>-</u> 82	98 100	65 70	8.0		 7. 8	120	151 151	111 111	20 5	80 5	6 5

a Sugar Creek Reservoir.

OVERLAND (Population, 11,566)

Ownership: St. Louis County Water Company. (See University City.)

POPLAR BLUFF (Population, 15,064)

Ownership: Municipal; also supplies 75 people outside the city limits. Total ροpulation supplied, 15, 139.

Source: Black River.

Treatment: Coagulation with lime and alum, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: 336,000 gal.

Finished-water storage: 1,200,000 gal.

POPLAR BLUFF--Continued ANALYSIS

Analysis, in parts per million, by Div. of Health of Missouri, Jefferson City, Mo.

	Finished water		Finished water
Silica (SiO ₂)	5. 0 . 10	Hardness as CaCO ₂ : Total Noncarbonate	129 7
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂)	$ \begin{array}{c} 27 \\ 15 \\ 8.2 \\ 0 \end{array} $	ColorpHSpecific conductance (micromhos at	7.8
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	149 15 6.3 	25 C.)	0.4 Sept. 11, 1951
Dissolved solids	150		

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO _s (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αy	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		129	 122	8. 1	8.3	 8. 0	130	134	 128	25 . 1	170 . 1	20 . 1

RICHMOND HEIGHTS (Population, 15,045)

Ownership: Supplied by the St. Louis County Water Co. (See University City.)

ST. CHARLES (Population, 14, 314)

Ownership: Municipal; also supplies about 200 people outside the city limits. Total population supplied, about 14,500.

Source: Missouri River.

Treatment: Plain sedimentation, prechlorination, softening with lime, coagulation and clarification with alum, stabilization with Calgon, chloramine, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: 1,000,000 gal (fill and draw system).

Finished-water storage: Steel standpipe, 1,000,000 gal; concrete and steel standpipe, 250,000 gal.

ST. CHARLES--Continued ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	11	7.8	Hardness as CaCO ₃ :		
Iron (Fe)	. 08	. 08	Total	166	116
Manganese (Mn)	0	0	Noncarbonate	45	60
Calcium (Ca)	48	32			
Magnesium (Mg)	11	8.8	Color	15	12
Sodium (Na)	24	23	pH	7.8	9.2
Potassium (K)	4.3	3.6	Specific conductance	ļ	1
Carbonate (CO ₃)	0	10	(micromhos at		
Bicarbonate (HCO ₃)	148	48	25 C.)	437	359
Sulfate (SO ₄)	85	90	Turbidity	2,000	0.6
Chloride (Cl)	9.0	12	Temperature (F.)	46	46
Fluoride (F)	. 1	.3	Date of collection	Apr. 13,	Apr. 13,
Nitrate (NO ₃)		4.6		1951	1951
Dissolved solids	318	232		1	1

Regular determinations at treatment plant, 1950.

	as	kalini S CaC (ppm)	o¸ ∣	.pH			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water			75 40	7. 9 9. 1	8. 2 9. 5			350 175	80 50	2000 . 1	18000 1.0	50 .05

ST. JOSEPH (Population, 78,588)

Ownership: St. Joseph Water Co.; also supplies 3,708 people outside the city limits. Total population supplied, about 82,300.

Source: Missouri River.

Treatment: Plain sedimentation, prechlorination, coagulation with alum and lime, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 14,800,000 gpd.

Raw-water storage: None.

Finished-water storage: 16,680,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water	,	Finished water
Silica (SiO ₂)	14 . 01 . 00	Hardness as CaCO ₃ : Total Noncarbonate	250 73
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	71 18 49 5. 2	Color	6 8. 0
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	216 153 20 .3 2.8	25 C.)	678 0.9 42 M ar. 26, 1951

ST. JOSEPH--Continued

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рH			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water										2570	19830	25
Finished water	160	272	99	7.8	8.4	7. 2	232	372	136			

ST. LOUIS (Population, 856, 796)

- Ownership: Municipal; also supplies about 2,000 people outside the city limits. Total population supplied, about 858,800.
- Source: Mississippi River at the Chain of Rocks Plant, 5 miles below the confluence with the Missouri River, 67 percent of supply; Missouri River at the Howard Bend Plant, 37 miles above its confluence with the Mississippi River, 33 percent of supply.
- Treatment (both plants): Plain sedimentation, softening with lime, coagulation with ferrous sulfate, sedimentation, secondary coagulation and sedimentation with alum, ammoniation (ammonium hydroxide), chlorination, rapid sand filtration, and postchlorination.
- Rated capacity of treatment plants: Chain of Rocks Plant, 160,000,000 gpd; Howard Bend Plant, 80,000,000 gpd.
- Raw-water storage: Plain sedimentation basin at Chain of Rocks Plant, 24,000,000 gal; plain sedimentation basin at Howard Bend Plant, 11,000,000 gal.
- Finished-water storage: Mississippi River water--Baden basins, 20,000,000 gal; Bissell's Point basins, 54,000,000 gal; and Compton Hill Reservoir, 85,000,000 gal. Missouri River water--Howard Bend basin, 5,000,000 gal, and Stacy Park reservoir, 100,000,000 gal. Total, 264,000,000 gal.
- The raw water from both sources of supply is pumped into the plain sedimentation basins at the respective treatment plants from which it flows by gravity through the treatment plants. The finished water from the Chain of Rocks Plant flows by gravity to storage basins at Baden, $3\frac{1}{2}$ miles south, and Bissell's Point basins, 7 miles south of Chain of Rocks. From these basins three-fourths of the output of the plant is pumped into the city mains connected with the Compton Hill Reservoir, which floats on the system, and supplies the lower part of the city. The remainder of the output is pumped from the Baden basins directly into the mains at a higher pressure and serves the higher sections of the city.
- The finished water from the Howard Bend Plant is pumped into Stacy Park Reservoir, about 9 miles distant, at an elevation high enough to supply by gravity flow the highest sections of the city.

ST. LOUIS--Continued ANALYSES

(Analyses, in parts per million, by the St. Louis Water Department)

	- 1111111111111111111111111111111111111	the Dt. Loui	S THEODE STOPE	
		ppi River	Missour	
		Fin. water	Raw water	Fin. water
	average a	average a	average a	average a
Silica (SiO ₂)	13	9.0	12	9.3
Iron (Fe)		.01		
Manganese (Mn)				
Calcium (Ca)		23	50	` 23
Magnesium (Mg)		9.7	13	9.4
Sodium (Na)	35	33	34	33.
Potassium (K)	1)	· -	34	Ī
Carbonate (CO ₃)	1.2	13	0	12
Bicarbonate (HCO ₂)	156	20	163	22
Sulfate (SO ₄) ······	97	109	96	108
Chloride (Cl)	16	17	16	17
Fluoride (F)				
Nitrate (NO ₃)	4.6	5.4	4.9	5.4
Dissolved solids	326	236	326	241
Hardness as CaCO ₃ :				
Total	183	97	181	96
Noncarbonate	53	60	48	. 58
Color	19	7	21	8
		•		-
pH	7.9	9. 2	8.0	9.2
Specific conductance				
(micromhos at 25 C.)		0.05	1 000	
Turbidity		0.07	1,300	0.07
Temperature (F.)			57	62
Date of collection		·		

Regular determinations at treatment plant, 1950

		lkalir s CaC (ppm	o,	рΗ			as	rdnes CaC (ppm)	O ₃	Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw waterb Finished waterb.	130 37	-	77 20	7.9 9.2		7.6 8.5	183 97	289 15 6		1100 . 07	6400 .60	80 . 02
Raw water c Finished water c	133 38		77 23	8.0 9.2	8.3 9.9	7.6 7.9	181 96	296 150		1300 . 07	6600 .30	105 . 03

a Monthly composite analyses.

SEDALIA (Population, 20, 354)

Ownership: Sedalia Water Co.; also supplies about 400 people outside the city limits. Total population supplied, about 20, 750.

Source: Spring Fork Lake and Lake Tebo. The two lakes are interconnected, and water from both is mixed before going into the mains.

Treatment: Prechlorination, coagulation with alum, lime for pH control, activated carbon as needed, and rapid sand filtration. Copper sulfate is used for algae control.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: Spring Fork Lake, 560,000,000 gal; Lake Tebo, 175,000,000 gal; Reservoir (settling basin), 50,000,000 gal. Total, 785,000,000 gal.

Finished-water storage: 600,000 gal.

b Chain of Rocks (fiscal year ending April 1950).

^c Howard Bend (fiscal year ending April 1950).

MISSOURI 257

SEDALIA--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

			<u> </u>
	Finished water		Finished water
Silica (SiO ₂)	4.3	Hardness as CaCO ₂ :	
Iron (Fe)	. 10	Total	55
Manganese (Mn)	.00	Noncarbonate	37
Calcium (Ca)	13		
Magnesium (Mg)	5.5	Color	3
Sodium (Na)	2.7	pH	7.8
Potassium (K)	1.4	Specific conductance	
Carbonate (CO _s)	0	(micromhos at	
Bicarbonate (HCO ₃)	22	25 C.)	140
Sulfate (SO ₄)	35	Turbidity	0.6
Chloride (Cl)	4.0	Temperature (F.)	
Fluoride (F)	.0	Date of collection	Apr. 17,
Nitrate (NO _s)	2.8		1951
Dissolved solids	106		

SIKESTON (Population, 11,640)

Ownership: Municipal.

Source: 3 wells (1 to 3) 392, 405, and 366 ft deep, and reported to yield 375, 800,

and 920 gpm, respectively.

Treatment: Aeration (spray and contact beds), rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 700,000 gal.

ANALYSIS

(Analysis, in parts per million, by the Division of Health, Jefferson City, Mo.)

	Finished water (city tap)		Finished water (city tap)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	10 . 2 	Hardness as CaCO ₂ : Total Noncarbonate	120 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	34 8.5 11	Color pH Specific conductance (micromhos at	7.3
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	158 3.7 7.6	25 C.) Turbidity	0.1
Fluoride (F)	.5	Date of collection	Oct. 2, 1951

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO ₃ (ppm)		рH			Hardness as CaCO _s (ppm)			Turbidity			
	Av	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		1 2 9	 116	7.3	 7.3	7.3	 116	 120	 97		1 1	

SPRINGFIELD (Population, 66, 731)

Ownership: Springfield City Water Co. (private); also supplies about 10,000 people outside the city limits. Total population supplied, about 76,700.

Source: Springs, 70 percent of supply; lake, 20 percent of supply; 1 well, 1,404 ft deep, 10 percent of supply.

Treatment: Prechlorination, coagulation with alum, carbon, sedimentation, rapid sand filtration, postchlorination, and ammoniation.

Rated capacity of treatment plant: 12,000,000 gpd.

Raw-water storage: 1,300,000,000 gal. Finished-water storage: 5,000,000 gal.

ANALYSIS

Analysis, in parts per million, by Div. of Health of Missouri, Jefferson City, Mo.

	Finished water (city tap)		Finished water (city tap)
Silica (SiO ₂)	4. 0 . 17	Hardness as CaCO ₃ :	178 18
Manganese (Mn) Calcium (Ca) Magnesium (Mg)	62 5.7	Noncarbonate	
Sodium (Na) Potassium (K)	6.4	pH Specific conductance	7. 1
Carbonate (CO ₃) Bicarbonate (HCO ₃)	0 196	(micromhos at 25 C.)	
Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	13 9. 7	Turbidity Temperature (F.) Date of collection	0, 1 Oct. 2,
Nitrate (NO ₃) Dissolved solids	5. 3 247	Date of correction	1951 ′

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO ₃ (ppm)		ρΗ			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		1 1		7.5 7.4		7. 1 7. 2			- -	6 0	25 0	1 0

UNIVERSITY CITY (Population, 39,892)

Ownership: St. Louis County Water Co.; also supplies Berkeley, Brentwood, Clayton, Ferguson, Jennings, Kinlock, Ladue, Maplewood, Overland, Pine Lawn, Richmond Heights, Webster Groves, Wellston, and a large number of incorporated and unincorporated places in St. Louis County. Total population supplied, about 268,000.

Source: Missouri River for regular supply; connection to the supply of St. Louis for auxiliary or emergency use.

Treatment: Prechlorination, softening with lime, coagulation with ferric sulfate, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 45,000,000 gpd.

Raw-water storage: 50,000,000 gal.

Finished-water storage: 12,000,000 gal.

The treatment plant is located on the Missouri River near St. Louis' Howard Bend Plant.

UNIVERSITY CITY--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw	Finished		Raw	Finished
	water	water		water	water
	average a	average		average a	average
Silica (SiO ₂)	13	12	Hardness as CaCO ₃ :		
Iron (Fe)	.03		Total	b 174	b 91
Manganese (Mn)			Noncarbonate	b40	
Calcium (Ca)	b48	b ₂₂			
Magnesium (Mg)	b 16	b 8.6	Color	b ₁₇	b 9
Sodium (Na)	N		pH	b7.9	b9.7
Potassium (K)	33	34	Specific conductance		
Carbonate (CO ₃)	b ₁	ba	(micromhos at		
Bicarbonate (HCO.)	b 162	b28	25 C.)		
Sulfate (SO ₄)		98	Turbidity	b _{1,700}	b _{0.1}
Chloride (Cl)	17	19	Temperature (F.)		56
Fluoride (F)	. 4	.4	Date of collection		
Nitrate (NO ₃)	2	2			
Dissolved solids		b 224		1	

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		267 74	99 25		8.3 10.2	7. 2 8. 6	174 91	321 134	81 51	1700 . 1	10000 2	60 . 1

a Monthly composite analyses of daily samples, except as indicated.

WEBSTER GROVES (Population, 23, 390)

Ownership: Supplied by the St. Louis County Water Co. (See University City.)

b Daily determinations.

ANACONDA, MONTANA (Population, 11, 254)

Ownership: Anaconda Copper Mining Co. Water supplied to copper smelter with branch line for city distribution.

Source: Warm Springs Creek impounded in Georgetown Lake, Silver Lake, Twin Lake, and Storm Lake; auxiliary supply 3 wells, 35, 40, and 50 ft deep, used when surface-water supply is turbid.

Freatment: Chlorination and ammoniation.

Raw-water storage: 11, 958, 000, 000 gal in Georgetown Lake; 4, 281, 000, 000 gal in Silver Lake; relatively small quantities stored in Twin and Storm Lakes. Finished-water storage: None.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Anaryses,	m parts	per miiii	on, by U. S. Geologi	icai Survey)	
	Hafner Wells	Warm Springs Creek a		Hafner Wells	Warm Springs Creek ^a
Silica (SiO ₂)	14	11	Hardness as CaCO ₃	:	
Iron (Fe)		. 04	Total	179	76
Manganese (Mn)			Noncarbonate	. 27	8
Calcium (Ca)	52	24			
Magnesium (Mg)	12	3.9	Color	• 5	5
Sodium (Na)	3.0	1.6	pH	. 8.2	7.6
Potassium (K)	1. 1	.8	Specific conductanc	e	
Carbonate (CO.)	0	0	(micromhos at		
Bicarbonate (HCO.)	186	83	25 C.)	. 339	150
Sulfate (SO ₄)	25	8.1	Turbidity	.	
Chloride (Cl)	1.9	1.2	Temperature (F.)	. 45	46
Fluoride (F)	. 3	. 3	Date of collection	June 22,	June 22,
Nitrate (NO ₃)	1.9	.6		1951	1951
Dissolved solids		94			
Depth (feet)		• • • • • • • • • • • • • • • • • • • •		35, 40, 50	
Diameter (inches)				15	
Date drilled	• • • • • • • • • • • • • • • • • • • •			1935-36	
Percent of supply				48	

Regular determinations at treatment plant, 1950 b

	Alkalinity as CaCO ₃ (ppm)			р Н			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		116	 58	 7. 9	 8. 7	7.6	92	108	 77			

a Finished water.

BILLINGS

(Population, 31, 834)

Ownership: Municipal; also supplies about 10,000 people outside the city limits. Total population supplied, about 41,800.

Source: Yellowstone River.

Treatment: Primary sedimentation (coagulation with alum during period of high turbidity); coagulation with alum, chlorination, ammoniation, secondary settling, addition of lime, polyphosphate, rapid sand filtration, and postchlorination. Activated carbon and copper sulfate are used during part of the year.

Rated capacity of treatment plant: 18,000,000 gpd.

Raw-water storage: 7,000,000 gal.

Finished-water storage: 6,740,000 gal.

Rated capacity of the plant will be increased late in 1951 to 22,000,000 gpd.

b Warm Springs Creek water.

BILLINGS--Continued

ANALYSES'

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	• 12	10	Hardness as CaCO ₃ :		
Iron (Fe)	. 02		Total	139	148
Manganese (Mn)	. 10		Noncarbonate	19	28
Calcium (Ca)		38			
Magnesium (Mg)	13	13	Color ·····	3	3
Sodium (Na)	28	29	pH	8.2	7.7
Potassium (K)	2. 4	2.6	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	147	146	25 C.)	388	407
Sulfate (SO_4)	71	78	Turbidity	9	2
Chloride (Cl)	6.5	7.5	Temperature (F.)	56	57
Fluoride (F)		.3	Date of collection	Sept. 17,	Sept. 17,
Nitrate (NO ₃)	1.4	1.6		1951	1951
Dissolved solids	242	257			

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)				рН		Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		186 193			8.6 8.5			284 302	58 76	47 25	620 160	10 9

BOZEMAN (Population, 11,325)

Ownership: Municipal; also supplies about 200 people outside the city limits.

Total population supplied, about 11,500.

Source: Bozeman Creek (2/3 of supply) and Lyman Creek (1/3 of supply). Middle Creek is used as an auxiliary supply.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plants: 9,000,000 gpd.

Raw-water storage: 3,000,000 gal.

Finished-water storage: 6,000,000 gal.

Bozeman Creek water enters the distribution system on the south side of the city and Lyman Creek water on the north side. The system is interconnected and consumers may receive either one or a mixture of the supplies.

BOZEMAN--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Lyman Creek (raw water)	Lyman Creek (fin- ished water)	Bozeman Creek (raw water)	Bozeman Creek (fin- ished water)
Silica (SiO ₂)		7.7	20	20
Iron (Fe)	.02	.08	.02	.02
Manganese (Mn)		.02	. 03	.03
Calcium (Ca)		40	27	27
Magnesium (Mg)		16	7.9	7.9
Sodium (Na)		. 5	3.1	3.0
Potassium (K)		.7	1.7	1.8
Carbonate (CO.)	6	0	õ	Õ
Bicarbonate (HCO ₃)	170	183	121	121
Sulfate (SO_4)	18	13	8.0	8.0
Chloride (Cl)	1.0	1.5	. 5	.5
Fluoride (F)		.1	.1	.1
Nitrate (NO ₃)	1.1	1.4	1.0	.6
Dissolved solids	178	171	132	132
Hardness as CaCO ₃ :				
Total	166	166	100	100
Noncarbonate	17	16	1	1
Color	2	2	4	4
рН	8.4	8. 2	7.5	7.5
Specific conductance	0.4	0.2		
(micromhos at 25 C.)	306	309	208	207
Turbidity		2	3	3
Temperature (F.)		53	45	45
Date of collection	Sept. 22,	Sept. 22,	Sept. 22,	Sept. 22,
	1951	1951	1951	1951

BUTTE (Population, 33, 251)

Ownership: Butte Water Co.; supplies Centerville, Meaderville, Silver Bow Park-Floral Park, Walkerville, and other communities. Total population supplied, about 50,000.

Source: Big Hole River; Basin Creek Reservoir; Yankee Doodle Creek.

Treatment: None.

Storage; 650,000,000 gal.

BUTTE--Continued ANALYSES

(Analyses, in parts per million, by State Board of Health, Helena, Mont.)

	City tap a	Big Hole River	Basin Creék	Moulton supply b
Silica (SiO ₂)	20			
Iron (Fe)	. 16		~-	
Manganese (Mn)				
Calcium (Ca)	16	16	16	11
Magnesium (Mg)	4.0	5.4	6.4	4.3
Sodium (Na)	5.3	h		
Potassium (K)	2.4	} 12	14	14
Carbonate (CO ₃)	0		0	0
Bicarbonate (HCO ₃)	64	82	77	52
Sulfate (SO_4)	11	12	25	24
Chloride (Cl)	3.0	5.0	4.5	4.5
Fluoride (F)	. 4	.3	.9	. 2
Nitrate (NO ₃)	1.3			
Dissolved solids	98	c 91	c 105	c 84
Hardness as CaCO ₃ :				
Total	56	61	67	45
Noncarbonate	4	0	3	3
Color	12			
pH	7.4			
Specific conductance				
(micromhos at 25 C.)	137			
Turbidity				
Temperature (F.)	1			
Date of collection	Nov. 17,	Dec. 12,	Dec. 12,	Dec. 12,
-	1951	1944	1944	1944

a Analyzed by U. S. Geological Survey.

GREAT FALLS (Population, 39, 214)

Ownership: Municipal; also supplies about 5,000 people outside the city limits. Total population supplied, about 44,200.

Source: Missouri River. The water flows through 36 and 48 in. pipelines from the intakes into a sump, from which it is pumped to the treatment plant.

Treatment: Coagulation with alum and lime, activated carbon, break-point chlorination, sedimentation, carbon, rapid sand filtration, and ammoniation. Rated capacity of treatment plant: 24,000,000 gpd.

Raw-water storage: 470,000 gal in suction well.

Finished-water storage: Clear well, 667,000 gal; tanks, 10,575,000 gal.

b From Yankee Doodle Creek.

c Sum of determined constituents.

GREAT FALLS--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	19	16	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 31	Total	151	151
Manganese (Mn)	. 09	.00	Noncarbonate	10	23
Calcium (Ca)	40	41			
Magnesium (Mg)	12	12	Color	5	3
Sodium (Na)	20	20	р Н	8.1	7.4
Potassium (K)	3 .8	3.0	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	172	156	25 C.)	372	386
Sulfate (SO_4)	3 8	47	Turbidity	8	2
Chloride (Cl)	11	15	Temperature (F.)		62
Fluoride (F)	. 8	.8	Date of collection		Sept. 25,
Nitrate (NO ₂)	2. 4	8.		1951	1951
Dissolved solids	234	241	ll .	}	

Regular determinations at treatment plant, 1951 a

	Alkalinity as CaCO ₃ (ppm)		рĦ			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water					8.6 8.1			202 202	120 120	1	1500 1. 10	5 . 45

a Fiscal year.

HAVRE (Population, 8,086)

Ownership: Municipal.

Source: 4 wells (1 to 4) 95, 90, 95, and 96 ft deep; yield reported to be 700,000, 1,000,000, 1,300,000, and 700,000 gpd. Construction is under way (1951) for using the Milk River as the source of supply.

Treatment: None.

Storage: 675,000 gal. (When the new plant and the change over to the Milk River as the source of the supply is completed, 200,000 gal additional storage will be available.

MONTANA 265

HAVRE--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Wells (city tap)	Raw water a		Wells (city tap)	Raw water ^a					
Silica (SiO ₂)	19	6.0	Hardness as CaCO ₃ :							
Iron (Fe)		. 02		404	138					
Manganese (Mn)			Noncarbonate	0	0					
Calcium (Ca)		33								
Magnesium (Mg)		14	Color	6	12					
Sodium (Na)	231	39	pH	7.7	8. 1					
Potassium (K)		2.2	Specific conductance							
Carbonate (CO ₃)	0	0	(micromhos at							
Bicarbonate (HCO.)	522	208	25 C.)	1,640	422					
Sulfate (SO ₄)	443	52	Turbidity	3	10					
Chloride (Cl)	29	2.0	Temperature (F.)	51						
Fluoride (F)	.6	.3	Date of collection	Nov. 6,	Nov. 6,					
Nitrate (NO ₃)	.8	1.2		1951	1951					
Dissolved solids	1,120	255								
Depth (feet)			•••••	90-96						
Diameter (inches)	24									
Date drilled	1929, 1946									
Percent of supply		Date drilled								

a Future supply, Milk River.

HELENA

(Population, 18, 581)

Ownership: Municipal; supplies about 200 people outside the city limits. Total population supplied, about 18,800.

Source: Tenmile Creek impounded in Chessman Reservoir, about 60 percent of supply (low service); Springs collected in Hale Reservoir, about 40 percent of supply(high service). Three wells (Wolston, Tenmile, and Eureka), emergency supply, have not been used for several years.

Treatment: Chlorination and ammoniation. Copper sulfate is used for algae control.

Rated capacity of treatment plants: 12,000,000 gpd.

Raw-water storage: 550,000,000 gal. Finished-water storage: 5,000,000 gal.

ANALYSES
(Analyses, in parts per million, by U. S. Geological Surve

(Analyses,	(Analyses, in parts per million, by U. S. Geological Survey)												
	Finished water ^a	Finished water ^b		Finished water a	Finished water ^b								
Silica (SiO ₂)	16	25	Hardness as CaCO ₃ :										
Iron (Fe)	. 04	. 01	Total	33	190								
Manganese (Mn)	. 14			19	42								
Calcium (Ca)		54.											
Magnesium (Mg)		13	Color	18	2								
Sodium (Na)	2.5	7.3	pH	7.1	7.7								
Potassium (K)	1.8	2, 3	Specific conductance										
Carbonate (CO ₃)	0	0	(micromhos at	1	!								
Bicarbonate (HCO _s)	17	181	25 C.)	92.6	395								
Sulfate (SO ₄)	20	52	Turbidity	6	1								
Chloride (Cl)	3.0	4.0	Temperature (F.)	63	52								
Fluoride (F)	. 2	.1	Date of collection	Sept. 24,	Sept. 24,								
Nitrate (NO ₃)	1.4	2.6	1	1951	1951								
Dissolved solids	76	259											

a Tenmile Creek system.

b Hale Reservoir system.

KALISPELL (Population, 9,737)

Ownership: Municipal; supplies about 650 people outside the city limits. Total population supplied, about 10,400.

Source: Noffsinger Spring; emergency supply, 2 wells. Both spring and wells are located on the bank of Stillwater River.

Treatment: None.

Storage: 1,750,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

(imaryors, in par	es per militor	by C. D. Geological balve	771
	Noffsinger Spring		Noffsinger Spring
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 02 	Hardness as CaCO ₂ : Total Noncarbonate	145 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	43 9.1 3.5 2.7	Color	3 7. 6
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	180 2.6 1.0 .0 .1	25 C.)	274 55 June 21, 1951

LEWISTOWN (Population, 6,573)

Ownership: Municipal; also supplies 50 people outside the city limits. Total population supplied, 6,623.

Source: Big Springs in Snowy Mountains 7,000,000 gpd. The water flows in a closed system to the city. That portion of the 7,000,000 gpd not used overflows to Big Spring Creek.

Treatment: None.

Storage: None. (Standpipes for emergency use only, 1,350,000 gal.).

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	City tap		City tap
Silica (SiO ₂)	7.0 .11	Hardness as CaCO ₃ : Total Noncarbonate	237 80
Calcium (Ca)	64 19 1.2 .4 0 192 78 2.0 .5 .9	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	2 8.2 442 1 52 Sept. 26, 1951

MONTANA 267

LIVINGSTON (Population, 7,683)

Ownership: Municipal; also supplies about 300 people outside the city limits.

Total population supplied, about 8,000.

Source: Yellowstone River.

Treatment: Coagulation with alum and sodium aluminate, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: 3,000,000 gal. Finished-water storage: 3,000,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	15	14	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 04	Total	67	70
Manganese (Mn)			Noncarbonate	0	2
Calcium (Ca)	17	19		<u> </u>	
Magnesium (Mg)	6.0	5.5	Color	4	3
Sodium (Na)	14	14	рН	7.8	7.5
Potassium (K)	3.3	2.8	Specific conductance		,
Carbonate (CO.)	0	0	(micromhos at		
Bicarbonate (HCO.)	84	83	25 C.)	208	214
Sulfate (SO ₄)	20	24	Turbidity	2	1
Chloride (Cl)	8.0	8.0	Temperature (F.)	54	54
Fluoride (F)	. 4	.4	Date of collection	Sept. 17,	Sept. 17,
Nitrate (NO ₃)	7	.3	[1951	1951
Dissolved solids	138	135			<u> </u>

MILES CITY (Population, 9, 243)

Ownership: Municipal; supplies 10 people outside the city limits. Total population supplied, 9, 253.

Source: Yellowstone River (about 90 percent of supply) and 1 well 553 ft deep (about 10 percent of supply). The well water is mixed with the river water before it enters the treatment plant.

Treatment: Softening with excess lime, or lime and soda ash, coagulation with alum, settling, recarbonation, rapid sand filtration, chlorination, and ammoniation. Recarbonation is sometimes carried out in the clear well.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 400,000 gal.

The percentage of river water and well water used varies throughout the year.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		,, .				
	(rav	owstone River v water)		Well w water)		hed water mposite)
Silica (SiO ₂)		12		11		8.5
iron (re)	Į.	. 02	-	. 06		. 06
Manganese (Mn)				. 04		. 04
Calcium (Ca) ······		60	1	1.1		13
Magnesium (Mg)		20		. 1	ì	8, 1
Sodium (Na)		68	1	340		112
Potassium (K)		2. 9		. 9		2.8
Carbonate (CO ₃)	l	0	1	41		0
Bicarbonate (HCO ₃)	Ī	177		729		85
Sulfate (SO_4)		215	1	32		216
Chloride (Cl)		11		26		13
Fluoride (F)	ĺ	. 5		2. 2	l	. 7
Nitrate (NO ₂)	1	1.8	1	2.0	1	1.4
Dissolved solids		496	1	830	ļ	422
Hardness as CaCO _s :			1			
Total		231		3		66
Noncarbonate		86		0	l	0
Color			1			
Color		4		22	l	3
pH	İ	8.3	1	8,8	Į	7. 9
Specific conductance		B 0-	1	1 000		0.00
(micromhos at 25 C.)		737	1	1,320	1	663
Turbidity		270	1	10		2
Temperature (F.)	Cont	48		52	Sant	52
Date of collection	sept.	26, 1951	Sept.	26, 1951	sept.	26, 1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			•	рН		Hardness as CaCO ₃ (ppm)			Temperature (°F)		
	Αv	Max	Min	Αv	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water Finished water	 68			7.8 8.2			239 60	479	86 		74	32

MISSOULA (Population, 22, 485)

Ownership: The Montana Power Co.; supplies also about 2,000 people outside the city limits. Total population supplied, about 24,500.

Source: Rattlesnake Creek; emergency supply 6 wells (1 to 6), 122, 90, 116, 86, 69, and 122 ft deep.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: 80,000,000 gpd.

Raw-water storage: 8 lakes in the upper drainage basin of Rattlesnake Creek with a total capacity of 820,000,000 gal; reservoir at intake dam 3,000,000 gal.

Finished-water storage: Distribution reservoir, 1,000,000 gal.

Storage lakes are located about 13 miles directly north of Missoula. The water is diverted from the creek at the intake dam, which is located about $3\frac{1}{2}$ miles north of the city. The water is screened and treated at the intake dam.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

		<u>, , </u>	
	Rattlesnake Creek (fin- ished water)		Rattlesnake Creek (fin- ished water)
Silica (SiO ₂)	5. 2	Hardness as CaCO ₃ :	
Iron (Fe)	. 03	Total	16
Manganese (Mn)		Noncarbonate	3
Calcium (Ca)	4.5		
Magnesium (Mg)	1.1	Color	5
Sodium (Na)	.8	pH	7. 5
Potassium (K)	.8	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	15	25 C.)	27
Sulfate (SO ₄)	1.8	Turbidity	
Chloride (Cl)	1.2	Temperature (F.)	55
Fluoride (F)	.1	Date of collection	June 22,
Nitrate (NO _s)	.1		1951
Dissolved solids	22		

ALLIANCE, NEBRASKA (Population, 7,891)

Ownership: Municipal.

Source: 8 wells (Plant, Warehouse, Black Hills, Emerson, Hospital, Box Butte, Mississippi, and Missouri) 110, 301, 304, 300, 110, 307, 340, and 291 ft deep. The yield of the wells is reported to be 600, 1,100, 2,050, 900, 450, 1,000, 750, and 1,100 gpm. The Mississippi and Missouri wells furnish the greater part of the domestic supply. The Black Hills well is used exclusively for industry.

Treatment: None. Storage: 450,000 gal.

ANALYSES

(Analyses, in parts per million, by Infilco Inc., Chicago, Ill.) Black Hills Missouri **M**ississippi Tap sample ^a Well Well Well Silica (SiO₂) 60 55 60 60 Iron (Fe)..... .01 0.0 1.0 Manganese (Mn)00 Calcium (Ca) 65 85 85 61 Magnesium (Mg) 17 23 25 19 Sodium (Na)..... 40 163 166 40 Potassium (K) 9.1 Carbonate (CO₃) 0 0 0 0 Bicarbonate (HCO₂)..... 261 432 429 260 Sulfate (SO₄) 77 84 250 240 Chloride (Cl)..... 13 17 32 53 Fluoride (F) Nitrate (NO₃) 11 Dissolved solids 825 840 404 438 Hardness as CaCO.: Total 230 306 232 317 Noncarbonate 19 16 0 Color..... pH 7.5 7.6 8.0 7.8 Specific conductance (micromhos at 25 C.) 614 Turbidity 4.0 2.0 0.0 0.5 Temperature (F.) Oct. 5, Date of collection Oct. 5, Apr. 30. Oct. 5, 1949 1949 1949 1951 Depth (feet) 291 340 304 Diameter (inches) 36 36 36 Date drilled 1949 1948 1938 Percent of supply

^a Composite, Mississippi and Missouri wells. Analyzed by U. S. Geological Survey.

BEATRICE (Population, 11,813)

Ownership: Municipal.

Source: 4 wells (1 to 4), 94, 95, 93, and 96 ft deep. The yield of the wells is reported to be 1,250, 820, 800, and 800 gpm.

Treatment: None. Storage: 3,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

Villary 515, In par	co per minion	i, by 0. b. deological bulve	<u> </u>
	Wells 1, 2, and 3 (composite)		Wells 1, 2, and 3 (composite)
Silica (SiO ₂)	30	Hardness as CaCO ₃ :	
Iron (Fe)	. 01	Total	168
Manganese (Mn)	.00	Noncarbonate	0
Calcium (Ca)	53		
Magnesium (Mg)	8.7	Color	2
Sodium (Na)	20	pH	7.4
Potassium (K)	3.5	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	216	25 C.)	398
Sulfate (SO_4)	25	Turbidity	0.4
Chloride (Cl)	10	Temperature (F.)	63
Fluoride (F)	. 1	Date of collection	Mar. 19,
Nitrate (NO _s)	2. 9		1951
Dissolved solids	276		

COLUMBUS (Population, 8,844)

Ownership: Municipal; also supplies 54 people outside the city limits. Total population supplied, 8,894.

Source: 6 wells (1 to 6) 98, 100, 126, 120, 100, and 68 ft deep. The yield of the wells is reported to be 300, 400, 840, 300, 600, and 300 gpm.

Treatment: Iron and manganese removal, prechlorination, partial softening with lime, stabilization with metaphosphate, coagulation with alum, and rapid sand filtration.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,100,000 gal.

COLUMBUS--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1	Well 1		Well 1	Well 1
	(raw	(finished		(raw	(finished
	water)	water)	l	water)	water)
Silica (SiO ₂)	35	36	Hardness as CaCO ₃ :		
Iron (Fe)	.32	. 12	Total	273	205
Manganese (Mn)	. 11	.02	Noncarbonate	16	15
Calcium (Ca)	87	58 ·			
Magnesium (Mg)	14	15	Color	4	4
Sodium (Na)	35	38	pH	7.4	8.0
Potassium (K)	17	16	Specific conductance		
Carbonate (CO.)	0	ا ہ	(micromhos at		i
Bicarbonate (HCO.)	314	232	25 C.)	690	580
Sulfate (SO ₄)	73	71	Turbidity	1	0.8
Chloride (Cl)		29	Temperature (F.)	54	5 5
Fluoride (F)	.3	3.3	Date of collection	Feb. 20,	Feb. 20,
Nitrate (NO ₂)		1.7		1951	1951
Dissolved solids		392			

Regular determinations at treatment plant, 1950

		lkalii s CaC (ppm	CO _s		pН		as	rdnes CaC (ppm)		Ten	pera (°F)	ture
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	270 84	ı		7.4 9.8			284 112			53 54		

FREMONT (Population, 14,762)

Ownership: Municipal; also supplies about 200 people outside the city limits. Total population supplied, about 15,000.

Source: 3 wells (Northwest, Northeast, and Southeast), 100, 102, and 105 ft deep; 4 condenser by-pass wells for use in emergency. The yield of the wells is reported to be 1,900 gpm, each. The water is pumped directly into the mains. Treatment: None.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	Wells (tap sample)		Wells (tap sample)
Silica (SiO ₂)	29 . 14 . 03	Hardness as CaCO ₂ : Total Noncarbonate	313 106
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	78 29 31 10 0 253 146 18 .3 8.3	Color pH	723 0.6 54 Feb. 27, 1951

273

GRAND ISLAND (Population, 22,682)

Ownership: Municipal.

Source: 12 wells, seven of which are standby for summer use. Five of the wells (Harrison St., Locust St., Park View 1 and 2, and Dodge Acres) are 84, 113, 81, 78, and 101 ft deep, respectively. The yield of these wells is reported to be 820, 1,300, 1,000, 890, and 910 gpm.

Treatment: None.

Storage: Reservoir, 4,000,000 gal.

The analysis given represents reasonably well the composition of the water served to the consumers.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells (composite) a		Wells (composite) a
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	27 . 06 . 00	Hardness as CaCO ₃ : Total Noncarbonate	189 53
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	62 8.3 19 7.6	Color	2 7. 2
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	0 166 64 13	25 C.)	465 0.6 60 Apr. 27,
Nitrate (NO _s) Dissolved solids	20 324		1951

a Clebum, Hart, Parkview 1 and 2, and Harrison St. wells.

HASTINGS (Population, 20, 211)

Ownership: Municipal; also supplies 54 people outside the city limits. Total population supplied, 20,265.

Source: 9 wells (1 to 9) 180, 215, 156, 180, 182, (not reported), 195, 195, and 190 ft deep. The yield of the wells is reported to be 980, 2,254, 1,012, (yield not reported for wells 4 and 5), 1,025, 1,000, 2,040, and 1,000 gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 1,550,000 gal.

HASTINGS--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells 1, 2, and 5		Wells 1, 2, and 5
	(tap sample)		(tap sample)
Silica (SiO ₂)	25	Hardness as CaCO ₃ :	
Iron (Fe)	.08	Total	155
Manganese (Mn)	.00	Noncarbonate	0
Calcium (Ca)	51		
Magnesium (Mg)	6.7	Color	1
Sodium (Na)	26	pH	7.5
Potassium (K)	5.7	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	208	25 C.)	410
Sulfate (SO_4)	34	Turbidity	0.3
Chloride (Cl)	8.0	Temperature (F.)	55
Fluoride (F)	. 3	Date of collection	May 1,
Nitrate (NO ₃)	3.8		1951
Dissolved solids	266		

KEARNEY (Population, 12, 115)

Ownership: Municipal.

Source: 9 wells (2 to 10), 41, 42, 39, 50, 54, 50, 47, 50, and 44 ft deep. The yield of the wells is reported to be 500, 600, 500, 600, 900, 600, 600, 875,

and 500 gpm.
Treatment: None.
Storage: 1,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells 2, 6, and 9 (tap sample)		Wells 2, 6, and 9 (tap sample)
Silica (SiO ₂)	36	Hardness as CaCO _s :	(cap sample)
Iron (Fe)	. 02	Total	395
Manganese (Mn)	.00	Noncarbonate	122
Calcium (Ca)	116		
Magnesium (Mg)	26	Color	. 2
Sodium (Na)	98	pH	7.5
Potassium (K)	10	Specific conductance	
Carbonate (CO _s)	0	(micromhos at	
Bicarbonate (HCO ₂)	333	25 C.)	1,110
Sulfate (SO ₄)	272	Turbidity	1
Chloride (Cl)	28	Temperature (F.)	55
Fluoride (F)	.4	Date of collection	May 1,
Nitrate (NO ₃)	21		1951
Dissolved solids	808		

NEBRASKA

LINCOLN (Population, 98,884)

Ownership: Municipal; also supplies about 1,850 people outside the city limits and other places. Total population supplied, about 100,700.

Source: 13 wells (1, 1A, 2-2, 2A, 3, 3A-2, 4, 4A, 5, 6, 7, 8, and 9, 50, 92, 88, 85, 65, 49, 54, 53, 67, 85, 84, 83, and 87 ft deep, located 3 miles northeast of Ashland, Nebr. for regular supply; 18 wells, located within Lincoln city limits, 130 to 188 ft deep, for auxiliary supply. The yield of the wells of the regular supply is reported to range from 1,170 gpm (well 4) to 2,090 gpm (well 9).

Treatment: Prechlorination, aeration, postchlorination, ammoniation, sedimentation, and rapid sand filtration, for regular supply. Chlorination only for auxiliary supply.

Rated capacity of treatment plant: 27,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Underground reservoirs, 30, 100, 000 gal; elevated storage, 385, 000 gal; concrete tanks, 2,000,000 gal. Total, 32,485,000 gal.

A collecting pipeline carries the water from the wells to the treatment plant just east of Ashland. After treatment the water is pumped into a concrete reservoir and then into a 36 in. cast-iron pipeline to Lincoln, a distance of 25 miles.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Auxiliary Supply Regular Supply Finished watera Finished Well 2-2 Well 16 watera Silica (SiO₂) 39 34 25 24 Iron (Fe)..... . 07 . 2 .09 . 1 Manganese (Mn)32 . 02 .00 . 0 Calcium (Ca) 69 55 59 56 Magnesium (Mg) 10 15 14 18 Sodium (Na)..... 32 30 40 31 Potassium (K) 8.0 4.0 Carbonate (CO.) Bicarbonate (HCO₃)..... 239 202 212 239 Sulfate (SO₄) 76 42 55 83 Chloride (Cl)..... 55 8.0 14 16 Fluoride (F) 4 . 3 . 1 . 3 Nitrate (NO.) 2.0 . 5 9.6 . 1 Dissolved solids 336 396 336 310 Hardness as CaCO₃: Total 196 247 206 180 Noncarbonate 32 51 14 0 7.5 7.8 7.0 7.3 Specific conductance (micromhos at 25 C.) 500 492 Turbidity Temperature (F.) 55 September, Date of collection July 17, May 29, September, 1951 1951 1951 1951 Depth (feet)..... 142 RR Diameter (inches)..... 24 12 Date drilled 1950 Percent of supply

a Analyzed by Lincoln Water Dept.

McCOOK (Population, 7,678)

Ownership: Municipal; also supplies about 350 people outside the city limits. Total population supplied, about 8,050.

Source: 4 wells (1 to 4) 81, 83, 84, and 84 ft deep. The yield of the wells is reported to be 750, 750, (not reported), and 1,500 gpm. Well 1 is used in the winter; wells 3 and 4 are used in the summer; and well 2 is a standby.

Treatment: None. (Chlorination, to start in the autumn of 1951).

Storage: 2 Elevated tanks, 500,000 and 235,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

Manganese (Mn) .00 Noncarbonate 0 Calcium (Ca) 84 Color 4 Magnesium (Mg) 25 Color 4 Sodium (Na) 78 pH 7.6 Potassium (K) 16 Specific conductance (micromhos at Bicarbonate (HCO ₃) 25 C.) 898 Sulfate (SO ₄) 127 Turbidity 0.7 Chloride (Cl) 20 Temperature (F.) 63 Fluoride (F) 9 Date of collection May 21				
Total		Well 1		Well 1
Dissolved solids 605	Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	.01 .00 84 25 78 16 0 402 127 20	Total	314 0 4 7.6 898 0.7 63 May 21, 1951
	Date drilled	• • • • • • • • • • • • • • • • • • • •		26 1926
Date drilled	Percent of supply	• • • • • • • • • • • • • • • • • • • •		~~

NORFOLK (Population, 11,335)

Ownership: Municipal; also supplies about 100 people outside the city limits. Total population supplied, about 11, 400.

Source: 4 wells (1 to 4), each 110 ft deep. The yield of the wells is reported to be 900, 800, 500, and 700 gpm. One or two of the four wells are held in reserve.

Treatment: Aeration, sedimentation, and rapid sand filtration.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,500,000 gal in clear wells and under pressure.

The water from the different wells is mixed before it reaches the treatment plant.

The analyses given of the raw and finished water do not represent water from the same 3 wells. The composition of the finished water varies to some extent depending on what wells are being pumped for the supply.

NEBRASKA 277

NORFOLK--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	3 wells (raw water) a	Finished water ^a		3 wells (raw water) a	Finished water ^a
Silica (SiO ₂)	31	32	Hardness as CaCO ₃ :	221	
Iron (Fe)	•••	. 04	Total Noncarbonate	284	310
Calcium (Ca)		.03	Noncarbonate	34	55
Magnesium (Mg)		94 18	Color	5	4
Sodium (Na)	15	16	pH	7.4	7.8
Potassium (K)	6.8	7.8	Specific conductance	[[
Carbonate (CO ₃)	0	0	(micromhos at		ļ
Bicarbonate (HCO ₃)	306	311	25 C.)	585	633
Sulfate (SO ₄)	61	83	Turbidity	10	0.5
Chloride (Cl)		13	Temperature (F.)	55	55
Fluoride (F)		.3	Date of collection	Feb. 20,	Feb. 20,
Nitrate (NO ₃)		.5	1	1951	1951
Dissolved solids	398	442			

a Composite.

NORTH PLATTE (Population, 15, 433)

Ownership: Municipal.

Source: 45 wells. Forty-one wells in one well field (field No. 1) with an average depth of 100 ft; in another well field 4 wells (2, 3, 4, and 5 or Dunlap well) 97, 92, 135, and 256 ft deep. The yield of the four wells is reported to be 1,750, 1,800, 500, and 800 gpm, respectively, and the combined yield of the 41 wells is 3,400 gpm.

Treatment: None. Storage: None.

The wells in field No. 1 are operated as a unit, whereas the other four wells are pumped separately.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Wells (tap sample)2		Wells (tap sample) ^a
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 03 . 00	Hardness as CaCO ₃ : Total Noncarbonate	326 120
Calcium (Ca)	99 19 112 12	Color pH Specific conductance	2 7.8
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nifrate (NO ₃) Dissolved solids	252 268 64 . 8 11 798	(micromhos at 25 C.)	1,100 0.6 60 May 1, 1951

a Well field 1 and well 5 (Dunlap well).

OMAHA (Population, 251, 117)

Ownership: Metropolitan Utilities District; also supplies about 13,000 people outside the city limits. Total population supplied, about 264, 100.
Source: Missouri River. The intake and treatment plant are located on the

Missouri River at Florence.

Treatment: Plain sedimentation, prechlorination, coagulation with alum, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 90,000,000 gpd.

Raw-water storage: 86,000,000 gal.

Finished-water storage: 44,000,000 gal.

There is considerable variation in the chemical quality of the water throughout the year.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water	Finished water
Silica (SiO ₂)	13	8.5	
Iron (Fe)	. 04	. 02	0.11
Manganese (Mn)	. 01	.00	. 03
Calcium (Ca)	72	64	
Magnesium (Mg)	6.4	20	
Sodium (Na)	41	62	
Potassium (K)	4.7	2,8	
Carbonate (CO ₃)	0	0	
Bicarbonate (HCO ₃)	174	170	175
Sulfate (SO ₄)	138	221	158
Chloride (Cl)	9. 5	14	
Fluoride (F)	. 4	. 6	
Nitrate (NO ₃)	4.0	1.4	
Dissolved solids	386	492	418
Hardness as CaCO ₃ :			
Total	206	242	230
Noncarbonate	64	102	86
0-1	_		
Color	_ 5		4
рН	7. 7	8. 0	7.8
Specific conductance			
(micromhos at 25 C.)	575		629
Turbidity	500		1
Temperature (F.)	34	0.4 40 46.5	34
Date of collection	Feb. 27, 1951	Oct. 12, 1947	Feb. 27, 1951

Regular determinations at treatment plant, 1950

		lkalii s CaC (ppm	co,	рН		Hardness as CaCO ₃ (ppm)		Turbidity				
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		232	 91	 7. 8	8.2	 7. 3	261	380	 175		15000 6.0	1 .

NEBRASKA 279

SCOTTSBLUFF (Population, 12,858)

Ownership: Municipal; also supplies about 100 people outside the city limits. Total population supplied, about 12, 950.

Source: 4 wells (2 to 5), 105, 105, 100, and 100 ft deep, for regular supply; 3 standby wells for emergency use. Two additional wells 102 ft deep are under construction. The yield of wells 4 and 5 is reported as 1, 361 and 1, 380 gpm.

Treatment: None.

Storage: 2 elevated tanks, 300,000 and 100,000 gal.

Three of the wells used for the regular supply are located in the south part of the city and the other in the north part. The water from the wells is pumped directly into the mains, which are interconnected in the midcity area, and consumers in the area receive mixed water from the four wells, whereas in the other sections they receive water from three wells and one. The analysis given is of a sample collected in the midcity area.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	4 Wells (composite)		4 Wells (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	48 .04 .00 76 24 104 9.9 0 364 178 22 .3	Hardness as CaCO ₃ : Total Noncarbonate Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	290 0 2 7.7 952 1 55 Apr. 30,
Dissolved solids Depth (feet) Diameter (inches) Date drilled Percent of supply	100-105 16-36 1935-48 100		

BOULDER CITY, NEVADA (Population, 3,903)

Ownership: U. S. Government.

Source: Lake Mead.

Treatment: Softening by the excess lime-soda ash process,

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: 100,000 gal.

Finished-water storage: 4,000,000 gal.

ANALYSES a

(Analyses by Metropolitan Water District of Southern Calif., Laverne, Calif.)

	Lake Mead ^b	Lake Mead ^c	,	Lake Mead ^b	Lake Mead ^c
Silica (SiO ₂)		9. 4 . 01	Hardness as CaCO ₃ : Total Noncarbonate	291 167	129 64
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	7	23 18 128	Color	8.0	0 8. 7
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)		7 65 247 60	(micromhos at 25 C.)	900 64	0 80
Fluoride (F) Nitrate (NO ₃) Dissolved solids	1.6	1.8 526	Date of collection	Oct. 22, 1948	Nov. 8, 1948

Regular determinations at treatment plant, 1948

	as	kalini s CaC (ppm)	O ₃	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		140 75	134 70		8.3 9.3			344 144	293 113	0	0	0

a In parts per million.

CARSON CITY (Population, 3,082)

Ownership: (a) Carson City Water Co.; supplies also about 100 people outside the city limits. Total population supplied, about 3,200.

(b) State of Nevada; supplies domestic water to about 525 people largely in the state penitentiary and orphans' home, and supplies water to several state buildings.

Source: (a) King Canyon Creek, Ash Canyon Creek, and springs. The creeks furnish about 80 percent and the springs about 20 percent of the supply.

(b) Springs (70 percent of supply). The remainder of the supply is purchased from the Virginia City Water Co. The source of this supply is Marlette Lake.

Treatment: (a) Chlorination. (b) Chlorination.

Rated capacity of treatment plant: (a) 3,000,000 gpd. (b) 250,000 gpd. (estimated).

Raw-water storage: (a) None. (b) None.

Finished-water storage: (a) 2,000,000 gal. (b) 350,000 gal.

b Raw water.

c Finished water.

CARSON CITY--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		Finished water b		Raw water ^a	Finished water b
Silica (SiO ₂)	20 .04	.09	Hardness as CaCO ₃ : Total Noncarbonate	40 0	21 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂)	2.6	7.3 .6 4.5 2.1	pHSpecific conductance (micromhos at	5 7.4	8 7. 2
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	60 1.6 1.0	36 .7 2.2	25 C.) Turbidity Temperature (F.)	100 60	69 60
Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 2 . 6 75	.2 .1 58	Date of collection	Aug. 7, 1951	Aug. 7, 1951

a Composite; Carson City Water Co. supply.

ELKO (Population, 5,393)

Ownership: Municipal.

Source: 5 wells (10 and 12 to 15) 400, 570, 495, 488, and 465 ft deep. The yield of the wells is reported to be 500, 650, 550, 650, and 500 gpm. Water for

limited irrigation use is obtained from springs.

Treatment: None. Storage: 2,500,000 gal.

(Analysis, in parts per million, by U. S. Geological Survey)

ANALYSIS

(Milarysis, III pa	res ber minnor	i, by U. S. Geological Surve	; <u>y)</u>
	Wells (composite, city tap)		Wells (composite, city tap)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂)	86 .03 37 6.6 39 12 0	Hardness as CaCO ₂ : Total Noncarbonate Color pH Specific conductance (micromhos at	119 0 7 7.5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	169 45 23 .4 1.7	25 C.) Turbidity Temperature (F.) Date of collection	438 May 20, 1951
Depth (feet)	400-570 12, 16 1936-1948 100		

b Composite; State of Nevada supply.

ELY (Population, 3,558)

Ownership: Municipal: also provides the entire supply for Kennicott Copper Corp. at Ruth, and other consumers outside the city limits. Total population supplied, about 4,550.

Source: Murry Springs.

Treatment: None. Storage: None.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

Murry Murry Springs Springs (city tap) (city tap) Silica (SiO₂) 9.7 Hardness as CaCO: Iron (Fe) Total 197 .01 Manganese (Mn) Noncarbonate 10 Calcium (Ca) 46 Magnesium (Mg) 3 20 Color Sodium (Na) 3.3 pH 7.7 Potassium (K) 9 Specific conductance (micromhos at Carbonate (CO₃) 0 Bicarbonate (HCO3) 25 C.)..... 228 360

Turbidity

Temperature (F.)......

Date of collection

Dec. 11,

1951

HENDERSON (Population, 3,643)

11

195

2.7

. 0

2.0

Ownership: Colorado River Commission of Nevada; supplies also the unincorporated towns of Victory Village, Carver Park, and Pittman. Total population supplied, about 6, 300.

Source: Lake Mead.

Sulfate (SO₄)

Chloride (Cl)

Fluoride (F)

Nitrate (NO₃)

Dissolved solids

Treatment: Chlorination, and copper sulfate for algae control in reservoirs.

Rated capacity of treatment plant: 22,000,000 gpd. Raw-water storage: Reservoirs, 34,961,000 gal.

Finished-water storage: None.

ANALYSIS
(Analysis, in parts per million, by Carl Wilson, Los Angeles, Calif.)

	Finished water		Finished water
Silica (SiO ₂)	12	Hardness as CaCO ₃ :	
Iron (Fe)	. 05		263
Manganese (Mn)		Noncarbonate	125
Calcium (Ca)	74		
Magnesium (Mg)	19	Color	
Sodium (Na)	92	pH Specific conductance	
Carbonate (CO _s)	6	(micromhos at	
Bicarbonate (HCO.)	156	25 C.)	
Sulfate (SO ₄)	233	Turbidity	
Chloride (Cl)	58	Temperature (F.)	
Fluoride (F)		Date of collection	Nov. 29,
Nitrate (NO ₃)			1948
Dissolved solids	571		

NEVADA 283

LAS VEGAS (Population, 24,624)

Ownership: Las Vegas Land and Water Co.

Source: 11 artesian wells (1 to 11) with depths ranging from 472 to 1,250 ft, and 3 springs. All of the wells are flowing wells, 5 of which are not equipped with pumps. The yield of the wells is reported to range from 241 to 1,665 gpm.

Treatment: None.

Storage: Reservoirs, 3,750,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Composite Well 6 Well 11 Spring 1 sample from reservoirs Silica (SiO₂) 13 14 14 14 Iron (Fe)..... .10 Manganese (Mn)00 Calcium (Ca) 49 50 48 51 Magnesium (Mg) 26 26 24 25 Sodium (Na)..... 6.7 7 12 4 Potassium (K) 1.9 Carbonate (CO₃)..... 0 0 0 n Bicarbonate (HCO₃)..... 236 238 224 238 Sulfate (SO₄) 37 46 43 50 Chloride (Cl)..... 3.9 3.5 4.5 2.9 Fluoride (F)3 . 2 . 3 . 3 Nitrate (NO₃)..... 2.1 1.5 1.8 1.6 Dissolved solids 266 263 264 252 Hardness as CaCO₃: Total 230 229 232 218 Noncarbonate 35 36 37 34 Color..... 5 5 pH 7.6 7.7 7.7 7.6 Specific conductance (micromhos at 25 C.) 439 430 432 424 Turbidity ___ --Temperature (F.) Date of collection Nov. 2, Nov. 2, Nov. 2, Nov. 2, 1951 1951 1951 1951 Depth (feet) 500 940 Diameter (inches)...... 11 - 1311 Date drilled 1941 1945 Percent of supply 100

NORTH LAS VEGAS (Population, 3,875)

Ownership: Municipal; supplies also about 50 people outside the city limits. Total population supplied, about 3,925.

Source: 8 artesian wells ranging in depth from about 300 to 750 ft.

Treatment: None.

Storage: Reservoir, 145,000 gal.

NORTH LAS VEGAS--Continued

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Composite sample from reservoir		Composite sample from reservoir
Silica (SiO ₂)	18	Hardness as CaCO ₃ :	
Iron (Fe)	. 02	Total	206
Manganese (Mn)		Noncarbonate	21
Calcium (Ca)	43		
Magnesium (Mg)	24	Color	3
Sodium (Na)	5.0	pH	7.6
Potassium (K)	5.3	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	226	25 C.)	397
Sulfate (SO_4)	33	Turbidity	
Chloride (Cl)	3.2	Temperature (F.)	70
Fluoride (F)	.1	Date of collection	Mar. 29,
Nitrate (NO _s)	1.3		1951
Dissolved solids	235	i	

RENO (Population, 32, 497)

Ownership: Sierra Pacific Power Co.; supplies also Sparks. Total population supplied, about 40,700.

Source: Truckee River (70 percent of supply) and Hunter Creek (30 percent of supply); auxiliary supply from 2 wells (1 and 2) 590 and 404 ft deep. The yield of the wells is reported to be 2,750 and 2,700 gpm.

Treatment: Sedimentation and chlorination of surface water sources. The well water is not treated.

Rated capacity of treatment plant: 40,000,000 gpd. Raw-water storage: Reservoirs, 77,300,000 gal.

Finished-water storage: None.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	Composite (city tap)		Composite (city tap)
Silica (SiO ₂)	28	Hardness as CaCO ₃ :	
Iron (Fe)	. 09	Total	40
Manganese (Mn)		Noncarbonate	16
Calcium (Ca)	9.8		
Magnesium (Mg)	3.8	Color	7
Sodium (Na)	4.1	рН	7.0
Potassium (K)	1.6	Specific conductance	
Carbonate (CO ₂)	0	(micromhos at	
Bicarbonate (HCO ₃)	29	25 C.)	110
Sulfate (SO_4)	27	Turbidity	
Chloride (Cl)	1.2	Temperature (F.)	
Fluoride (F)	.1	Date of collection	May 20,
Nitrate (NO _s)	.3		1951
Dissolved solids	91		

SPARKS (Population, 8,203)

Ownership: Sierra Pacific Power Co. (See Reno.)

NEVADA 285

WINNEMUCCA (Population, 2,847)

Ownership: California Pacific Utilities Co.; supplies also about 100 people outside the city limits. Total population supplied, about 2,950.

Source: 2 wells (1 and 2) and spring. The wells are 140 and 525 ft deep, and reported to yield 700 and 800 gpm. The spring is located about 4 miles south of town, and furnishes about 33 percent of the supply. Usually any two of the three sources of supply are sufficient to meet the water requirements during peak demands.

Treatment: Chlorination.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: --

Finished-water storage: 2 reservoirs with a combined capacity of 1,000,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Composite sample (city tap)	Well 1	Well 2	Spring a
Silica (SiO ₂)	52	34	44	24
Iron (Fe)	. 04	. 04	. 03	
Manganese (Mn)				
Calcium (Ca)	60	72	59	38
Magnesium (Mg)	18	16	16	10
Sodium (Na)	77	55	78	16
Potassium (K)		2.8	4.6	
Carbonate (CO ₃)	. 0	0	0	0
Bicarbonate (HCO ₃)	286	270	287	146
Sulfate (SO ₄) ······	92	76	72	35
Chloride (Cl)	58	54	61	12
Fluoride (F)	. 2	.3	.6	
Nitrate (NO ₃)		1.3	.1	
Dissolved solids	483	442	466	203
Hardness as CaCO ₃ :				
Total	224	246	213	136
Noncarbonate	0	24	0	16
Color	7			
рН	7. 7	7.6	7. 7	
Specific conductance				
(micromhos at 25 C.)	759	710	748	
Turbidity				
Temperature (F.)			65	
Date of collection	May 20,	Nov. 17,	Nov. 17,	
	1951	1950	1950	
Depth (feet)		140	525	
Diameter (inches)		16	16	
Date drilled		1921	1937	
Percent of supply	100			

a Analysis by University of Nevada, published in 1944.

ALBUQUERQUE, NEW MEXICO (Population, 96,815)

Ownership: Municipal.

Source: 42 wells, mostly in four principal well fields. Main plant (along east edge of valley between Central Ave. and Indian School Road) 20 wells 142 to 716 ft deep. Candelaria (Candelaria Road at Arno Street) 4 wells 288 to 578 ft deep; San Jose (South Broadway at San Jose Road) 6 wells 306 to 503 ft deep; Atrisco (at Helen Circle) 8 wells 356 to 558 ft deep; 4 wells at other locations in the city. Treatment: Chlorination, and settling in clear wells.

Finished-water storage: 22,100,000 gal.

Water from main plant and Candelaria fields is directly pumped to main pumping station and supplies portions of city in valley east of Rio Grande and nearby parts of city on east mesa. Water from Atrisco field supplies west mesa and valley areas west of Rio Grande and is also pumped directly to outlying areas in eastern part of east mesa. San Jose field is used only during periods of heavy water demand.

Water from main plant and Candelaria fields was similar at time of sampling and is represented by one analysis for main plant. The individual wells in the main well field differ somewhat in the chemical character of their waters and, therefore, the composition of water supplied at any point in the system will vary from time to time depending on which wells are in use. Tap samples collected at approximate weekly intervals at the Geological Survey laboratory ranged in conductance from 327 to 516 micromhos during 1950, and from 352 to 749 micromhos during 1951.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	1			T	
	Main	Atrisco	t	Main	Atrisco
	pump	pump	1	pump	pump
	station a	station b		station a	station b
Silica (SiO ₂)	71	63	Hardness as CaCO ₃ :		
Iron (Fe)	.0	.0	Total	116	85
Manganese (Mn)			Noncarbonate	0	0
Calcium (Ca)	32	24			
Magnesium (Mg)	8.8	6.1	Color	2	1
Sodium (Na)	\ 42	71	pH	7.9	7.6
Potassium (K)	} 42	1 11	Specific conductance		
Carbonate (CO _s)	0	0	(micromhos at		
Bicarbonate (HCO _s)	161	163	25 C.)	404	471
Sulfate (SO ₄)	54	82	Turbidity		
Chloride (Cl)	12	12	Temperature (F.)	76	61
Fluoride (F)	.7	.9	Date of collection	Oct. 12,	Oct. 12,
Nitrate (NO ₃)	. 6	.7		1051	1951
Dissolved solids	310	340]	ļ
Depth (feet)		365-558			
Diameter (inches)					14-10
Date drilled					1950-51
Percent of supply					±10

^a Broadway and Tijeras. Composite sample from wells 2-S, 3-S, 4, 6-S, 11-S, 13, and 19 in main well field.

b Composite sample from wells 1, 2, and 4, in Atrisco well field.

NEW MEXICO

ARTESIA (Population, 8,244)

Ownership: Municipal.

Source: 5 wells (Roselawn, Standpipe, Hospital, N. 5th St., and E. Chisum St.) 955, 1,050, 1,050, 1,100, and 1,200 ft deep, respectively. A sixth well 200 ft deep, was under construction in 1951. The yield of the wells is reported to be 500, 1,100, 1,100, 1,200, and 1,100 gpm.

Treatment: None.

Storage: Steel standpipe, 500,000 gal.

Partial analyses of samples from the other 4 wells indicate that the water from these wells is similar in composition to that from the Chisum Street well, which has the lowest dissolved solids.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Chisum St. well		Chisum St. well
Silica (SiO ₂)	14	Hardness as CaCO ₃ : Total	581
Manganese (Mn)		Noncarbonate	384
Calcium (Ca)	162		
Magnesium (Mg)	43	Color	2
Sodium (Na)	16	pH	7.3
Potassium (K)	3.2	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	240	25 C.)	1,090
Sulfate (SO ₄)	400	Turbidity	
Chloride (Cl)	8.0	Temperature (F.)	
Fluoride (F)	1.1	Date of collection	May 10,
Nitrate (NO ₃)	2.0		1951
Dissolved solids	767		
Depth (feet)	• • • • • • • • • • • • • • • • • • • •		1,200
Diameter (inches)	••••••	•••••	13 3/8
Date drilled	• • • • • • • • • • • • • • • • • • • •	•••••	1949
		•••••	20

CARLSBAD (Population, 17, 975)

Ownership: Municipal.

Source: 7 wells (4, 6, 7 to 9, and 11 and 12) on west side near Carlsbad Canal, 233, 125, 143, 152, 115, 163, and 245 ft deep. Two wells (14 and 15) on east side near the Country Club area, each 200 ft deep, were under construction in 1951. The yield of the wells is reported to be 1,200, 1,600, 700, 1,250, 1,100, 1,100, and 3,000 gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 350,000 gal.

The chloride concentration of water from the wells fluctuates somewhat during the year. All wells in the west-side group yield water of similar composition. The analyses represent water of maximum and minimum dissolved solids obtained from these wells at the time of the collection of the samples.

CARLSBAD -- Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 9	Well 12		Well 9	Well 12
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	144 45 83 3.2 0 266 321 133 .4 3.2		Hardness as CaCO ₃ : Total Noncarbonate Color Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	544 326 0 7.9 1,370 64 May 10, 1951	598 384 2 1,540 May 10, 1951
Depth (feet) Diameter (inches) Date drilled Percent of supply					245 18 1948

CLOVIS (Population, 17, 318)

Ownership: Public Service Co. of New Mexico. Source: 9 wells (2, and 4 to 11) 362, 360, 345, 348, 354, 361, 351, 407, and 438 ft deep. The yield of the wells is reported to be from 550 to 840 gpm.

Treatment: Sedimentation and chlorination.

Rated capacity of treatment plant: 7,500,000 gpd.

Raw-water storage: --

Finished-water storage: 1,715,000 gal.

All wells yield water of similar composition.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Well 2		Well 2
Silica (SiO ₂) Iron (Fe)	32	Hardness as CaCO ₃ : Total	156
Manganese (Mn) Calcium (Ca)	28	Noncarbonate	0
Magnesium (Mg)	21	Color	0
Sodium (Na) Potassium (K)	39 8.0	pHSpecific conductance	7.8
Carbonate (CO ₃) Bicarbonate (HCO ₃)	0 235	(micromhos at 25 C.)	457
Sulfate (SO_4)	233	Turbidity	
Chloride (Cl)	13	Temperature (F.)	M 0
Fluoride (F)	2.6 9.5	Date of collection	May 8, 1951
Dissolved solids	292		

NEW MEXICO

GALLUP (Population, 9, 133)

Ownership: Municipal.

Source: 10 wells (two of which are held in reserve for emergencies) located in the city, 375 to 1,800 ft deep. The yield of the wells is reported to be from

60 to 235 gpm.

Treatment: Partial softening with lime, coagulation with alum, pressure filtration, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 4,600,000 gal.

The composition of the water delivered to the consumers varies somewhat depending on the proportions obtained from different wells. Hardness is reduced to a range between 150 to 200 ppm in the finished water. The samples represent a composite of raw water from all wells in use at time of sampling and the treated water supplied to consumers at time of sampling.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	.03	15 .01	Hardness as CaCO ₃ : Total Noncarbonate	334 0	160 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	86 29 }166	21 26 167	Color pH Specific conductance	3 7.5	3 8. 0
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	0 424 297 26	23 173 293 25	(micromhos at 25 C.)	1,230	974
Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 6	. 4 . 5 656	Date of collection	Dec. 5, 1950	Dec. 5, 1950

HOBBS (Population, 13,875)

Ownership: Municipal.

Source: 9 wells (1, and 3 to 10) 207, 207, 207, 207, 145, 152, 210, 210, and 210 ft deep. Three of the wells (4, 6, and 7) are held in reserve and constitute an emergency supply. The yield of the wells is reported to be from 400 to 1,250 gpm.

Treatment: Chlorination. Storage: 800,000 gal.

All wells yield water of similar quality.

HOBBS--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

		, , ,	• /
	Well 9	•	Well 9
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	56 .0	Hardness as CaCO ₃ : Total Noncarbonate	252 82
Calcium (Ca)	78 14 41 3.2	1	2 7. 5
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 207 81 61 1.2 9.7	(micromhos at 25 C.)	681 67 M ay 9, 1951
Depth (feet) Diameter (inches) Date drilled Percent of supply			210 16 1947

LAS CRUCES (Population, 12, 325)

Ownership: Municipal; also serves suburban areas. Total population served, about 15,000.

Source: 7 wells (1 to 7). Six wells (1 to 6) 294 to 301 ft deep are located at the reservoir 1 mile east of the city; the other well, 215 ft deep, at Washington school. The yield of the wells is reported to be 250, 205, 270, 310, 250, 400, and 800 gpm. Most of the supply is taken from the reservoir well field.

Treatment: Chlorination.

Storage: Reservoir, 2,885,000 gal.

The analysis of the sample from well 3 shows the quality of the best water from the reservoir well field. Dissolved solids in the water from the other wells as shown by partial analysis ranges between that shown for well 3 and that for well 7 at Washington school.

LAS CRUCES--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 3	Well 7		Well 3	Well 7
Silica (SiO ₂)	. 07	32 .13	Hardness as CaCO ₃ : Total Noncarbonate	238 .92	629 270
Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	57 7. 0	196 34 173 6.0	pH Specific conductance (micromhos at	0 7. 6	7.3
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	178 112 78	439 401 153	25 C.)	741 70 Sept. 10,	1,810 65 Sept. 10,
Nitrate (NO ₃) Dissolved solids	. 6 474	7.8 1,260		1951	1951
Depth (feet) Diameter (inches) Date drilled Percent of supply				301 10 1938	215 16 1951

LAS VEGAS (City and town) (Population, 13,763)

Ownership: Public Service Co. of New Mexico. Serves Las Vegas (city), population 7,494, and Las Vegas (town), population 6,269. Also serves suburban areas outside of these two places. Total population served, about 14,800.

Source: Gallinas River impounded in reservoirs 6 miles above community.

Treatment: Sedimentation and chlorination. Alum coagulation used occasionally (2 to 3 weeks a year average) for settling prior to the entry of the water to the reservoir.

Rated capacity of treatment plant: (Alum plant) 1,000,000 gpd.

Raw-water storage: Impounding reservoir, 30,000,000 gal; Bradner Reservoir, 103,000,000 gal; Peterson Reservoir, 68,000,000 gal; equalizing reservoir, 8,000,000 gal. Total, 209,000,000 gal.

Finished-water storage: 8,000,000 gal.

Analyses represent raw water from the two largest reservoirs. The alum plant was not being used at the time of the collection of the samples.

LAS VEGAS--Continued

ANALYSES

(Analyses,	in parts per	million, b	y U.	S. (Geological Survey)			

	Peter-	Bradner		Peter-	Bradner
	son Res-	Reser-		son Res-	Reser-
	ervoir	voir		ervoir	voir
Silica (SiO ₂)	8.9	9, 6	Hardness as CaCO ₃ :	}	
Iron (Fe)	.01	.01	Total	126	152
Manganese (Mn)			Noncarbonate	6	4
Calcium (Ca)	43	52			
Magnesium (Mg)	4.4	5.4	Color	l o	0
Sodium (Na)	3.4	6.1	pH	8.2	8.2
Potassium (K)	1.0	1.2	Specific conductance		
Carbonate (CO ₂)	0	6	(micromhos at		
Bicarbonate (HCO.)	145	168	25 C.)	251	308
Sulfate (SO ₄)	12	14	Turbidity		
Chloride (Cl)		3.0	Temperature (F.)	l	l
Fluoride (F)	. 2	.2	Date of collection	June 5,	June 5,
Nitrate (NO.)	. 2	2		1951	1951
Dissolved solids	150	181			

PORTALES (Population, 8, 112)

Ownership: Municipal.

Source: 9 wells (1 to 9) all located in Portales. Two wells (1 and 2) at North Tower, 99 and 100 ft deep; one well (3) at Lindsey School, 132 ft deep; two wells (4 and 5) on Locust Street, 129 and 125 ft deep; three wells (6, 7, and 8) at South Tower, 117, 112, and 125 ft deep; one well (9) at City Park, 129 ft deep. The yield of the wells is reported to be from 450 to 2,000 gpm.

Treatment: Sedimentation and chlorination.

Rated capacity of treatment plant: --

Raw-water storage: Elevated tanks, 260,000 gal.

Finished-water storage: 305,000 gal.

Analyses show composition of water from Locust Street and South Tower well fields which have the lowest and highest dissolved solids concentrations respectively of the 5 fields.

ANALYSES
(Analyses in parts per million by U.S. Geological Survey)

(Analyses, in parts per million, by U. S. Geological Survey)					
	2 wells a	3 wells b		2 wells s	3 wells b
Silica (SiO ₂) Iron (Fe)	46 . 0	51 .0	Hardness as CaCO ₃ : Total	304	492
Manganese (Mn)			Noncarbonate	104	320
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	23 56 5. 6	123 45 103 5.6	ColorpHSpecific conductance	0 8. 0	0 8. 0
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	244 157	0 209 358 117	(micromhos at 25 C.)	827 	1,330
Fluoride (F) Nitrate (NO ₃) Dissolved solids	1.8 5.1	1. 7 7. 6 952	Date of collection	May 8, 1951	May 8, 1951

a Locust Street well field.

b South Tower well field.

NEW MEXICO

RATON (Population, 8, 241)

Ownership: Municipal; also supplies a small area outside the city limits. Total

population supplied, about 8,400.

Source: Chicorico Creek impounded in Lake Maloya 7 miles northeast of Raton. Treatment: Coagulation with alum, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd. Raw-water storage: Lake Maloya, 1,304,000,000 gal.

Finished-water storage: 2,750,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	13	12	Hardness as CaCO3:		
Iron (Fe)	.30	.01	Total	93	93
Manganese (Mn)			Noncarbonate	0	12
Calcium (Ca)	24	24			
Magnesium (Mg)	8, 0	8.0	Color	20	0
Sodium (Na)	7.3	5.7	рН	8.0	7.7
Potassium (K)	1.2	1.8	Specific conductance	Ì	1
Carbonate (CO.)	0	10	(micromhos at	\	
Bicarbonate (HCO.)	120	99	25 C.)	204	212
Sulfate (SO ₄)	6.9	20	Turbidity		
Chloride (Cl)	1.0	3.0	Temperature (F.)		
Fluoride (F)	. 2	1.1	Date of collection	June 6,	June 6,
Nitrate (NO ₂)	1.3	1.3	1	1951	1951
Dissolved solids	132	131			

ROSWELL (Population, 25, 738)

Ownership: Municipal,

Source: 10 wells (2 to 11) 320 to 586 ft deep. Wells 2 to 9 are located near the Atchison, Topeka and Santa Fe Railroad in the downtown area; wells 10 and 11 in new well field 6 miles west of the city, near Highway 70. The yield of the wells is reported to be from 500 to 3, 300 gpm.

Treatment: None. Storage: 5,000,000 gal.

The analyses given represent waters of about maximum and minimum dissolved solids content pumped into system. Water delivered to consumers ranges between these extremes.

ROSWELL--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

			· · · · · · · · · · · · · · · · · · ·		
	Well 6	Well 10		Well 6	Well 10
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	.0	15 	Hardness as CaCO ₃ : Total Noncarbonate	664 484	588 394
Calcium (Ca) Magnesium (Mg) Sodium (Na)	48 124	168 41 54	ColorpH	0 7. 7	2 7. 9
Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄)	0 219	3.4 0 237 421	Specific conductance (micromhos at 25 C.) Turbidity	1,740	1, 250
Chloride (Cl) Fluoride (F) Nitrate (NO ₂)	185 . 7 6. 7	58 . 7 7. 5	Temperature (F.) Date of collection	May 11, 1951	 May 11, 1951
Depth (feet)					586 13 ½
Diameter (inches) Date drilled Percent of supply.				16 ± 20	+20

SANTA FE (Population, 27, 998)

Ownership: Public Service Co. of New Mexico.

Source: Santa Fe Creek (impounded). Auxiliary supply from 5 wells (Alto Street, Hickox, Torreon, Ferguson, and Santa Fe) 313, 200, 570, 470, and 725 ft deep, respectively.

Treatment: Plain sedimentation, chlorination, and addition of polyphosphate (Calgon) for corrosion control. Copper sulfate is used to control algae in the reservoirs.

Raw-water storage: 1,326,000,000 gal. Finished-water storage: 5,000,000 gal.

Į,

The surface supply is used exclusively in years when runoff is sufficient. Water from Torreon, Ferguson, and Santa Fe wells is of about the same composition. Water from the Hickox and Alto Street wells is somewhat higher in dissolved solids.

NEW MEXICO

SANTA FE--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Santa Fe Creek	Torreon Well	Santa Fe Well
5.11. (G10.)	(finished water)		
Silica (SiO ₂)	11	15	16
Iron (Fe)	. 03	.0	. 02
Manganese (Mn)			
Calcium (Ca) ······	8.0	46	56
Magnesium (Mg)	2.4	7.0	5.1
Sodium (Na)	3.0	4.8	5. 7
Potassium (K)	. 9	1.2	1. 2
Carbonate (CO ₂)	0	0	0
Bicarbonate (HCO ₃)		130	154
Sulfate (SO ₄)		5.5	21
Chloride (Cl)		12	11
Fluoride (F)		.0	. 1
Nitrate (NO ₃)		30	15
Dissolved solids	58	207	217
Hardness as CaCO ₃ :			
Total	30	144	160
Noncarbonate	5	38	34
Color		0	0
pH	7. 9	7.9	8.0
Specific conductance			
(micromhos at 25 C.)	72.0	311	347
Turbidity			
Temperature (F.)			
Date of collection		June 7, 1951	June 7, 1951
		570	725
Depth (feet)		12	16 to 17
Diameter (inches)		1951	
Date drilled		1991	1951
Percent of supply			

TUCUMCARI (Population, 8, 419)

Ownership: Municipal; supplies also a small area outside the city limits. Total population supplied, about 8,470.

Source: 10 wells; 2 wells (1 and 2) in West field, 350 and 333 ft deep and reported to yield 240 and 260 gpm; 8 wells (14 to 21) in Metropolitan Park, 250 to 378 ft deep and reported to yield an average of 160 gpm.

Treatment: Chlorination.

Raw-water storage: 3,000,000 gal. Finished-water storage: 900,000 gal.

An additional well in Metropolitan Park was under construction in 1951.

The analyses show the quality of water produced from the two well fields. Most of supply comes from the Metropolitan Park field.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1	Well 20		Well 1	Well 20
Silica (SiO ₂) Iron (Fe) Manganese (Mn)		20 . 01	Hardness as CaCO ₃ : Total Noncarbonate	116 0	191 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)		32 27 54 5.0	ColorpHSpecific conductance	0 8. 0	7.7
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄)	10 315 84	0 299 48	(micromhos at 25 C.) Turbidity	707 	572
Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	5, 3	10 1.4 5.7 342	Temperature (F.) Date of collection	May 7, 1951	May 7, 1951
Depth (feet) Diameter (inches) Date drilled Percent of supply					378 14

BISMARCK (Population, 18,640)

Ownership: Municipal; also supplies 800 people outside the city limits. Total population supplied, 19,440.

Source: Missouri River.

Treatment: Plain sedimentation, softening with lime and soda ash, coagulation with alum, activated carbon, sedimentation, rapid sand filtration, chlorination, and ammoniation.

Rated capacity of treatment plant: 4,500,000 gpd.

Raw-water storage: 1,500,000 gal. Finished-water storage: 4,100,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	6, 6	3, 4	Hardness as CaCO ₃ :		
Iron (Fe)		. 05	Total	130	84
Manganese (Mn)	.00	.00	Noncarbonate	23	55
Calcium (Ca)	35	28			
Magnesium (Mg)	10	3.4	Color	33	5
Sodium (Na)	31	31	pH	7.9	8.3
Potassium (K)	3.4	3.5	Specific conductance	<u> </u>	1
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₂)	131	35	25 C.)	393	338
Sulfate (SO ₄)	85	114	Turbidity	330	2
Chloride (Cl)		7.0	Temperature (F.)	32	32
Fluoride (F)	. 1	1 .1	Date of collection	May 6,	May 6,
Nitrate (NO ₂)	2.7	.5	Į.	1951	1951
Dissolved solids	250	244	i	1	Į.

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	A٧	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		232 148			8.5 10.2		208 90	338 200	104 44	1295 0	4600 0	25 0

DICKINSON (Population, 7, 469)

Ownership: Municipal.

Source: 6 wells, 199, 214, 173, 175, 140, and 129 ft deep, about 59 percent of the supply; Heart River, about 41 percent of supply. During the 1950 calendar year the supply consisted of a mixture of river water and well water from May through September, and well water, exclusively, the remainder of the year. The use of well water will be discontinued as soon as the new treatment plant is ready for operation. The completion date for the plant is set for Mar. 1, 1952

Treatment: Coagulation with alum and lime, activated carbon, sedimentation, filtration, chlorination, and ammoniation for river water. Addition of polyphosphate (Nalco) to both well water and river water for stabilization and corrosion control.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,400,000 gal.

DICKINSON -- Continued

There is tremendous variation in the composition of the river water throughout the year. The analyses show approximately the range in composition of the raw river water.

The wells furnish water of similar composition. The analysis given represents water of the maximum concentration of dissolved solids.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(maryses, in parts		Heart		
	Well (raw		Raw	Finished
j	water)	Raw		water a
Giliar (GiO.)		water_	water	
Silica (SiO ₂)	12	4.2	6.0	10
Iron (Fe)	. 05	. 70	. 25	. 03
Manganese (Mn)				
Calcium (Ca)	9.0	9.4	60	53
Magnesium (Mg)	7.0	3.6	19	21
Sodium (Na)	574	10	1 000	ſ 199
Potassium (K)	6.4	6.6	290	3.6
Carbonate (CO.)		0	31	
Bicarbonate (HCO ₃)	b911	68	500	388
Sulfate (SO ₄) ·····	528	9.0	376	316
Chloride (Cl)	7.0	2.5	2.0	10
Fluoride (F)	. 2	.0	.5	. 2
Nitrate (NO ₃)	.5	. 2	.5	.5
Dissolved solids	1,600	87	1,070	814
Hardness as CaCO _s :	1,000	0,	1,010	011
Total	51	38	228	219
Noncarbonate	0	0	0	0
Troncar bollate	U		U	· · · · · · · · · · · · · · · · · · ·
Colon				
ColorpH				
•	8.4	7.5	8.2	8.5
Specific conductance				
(micromhos at 25 C.)	2,260	136	1,430	1,230
Turbidity				
Temperature (F.)			52	
Date of collection	July 18,	Mar. 23,	May 26,	Aug. 3,
	1947	1947	1947	1947

a Composite of weil and river water.

FARGO (Population, 38, 256)

Ownership: Municipal; also supplies about 600 people outside the city limits. Total population supplied, about 38, 900.

Source: Red River of the North for regular supply; 1 well, 195 ft deep, for auxiliary supply. The auxiliary supply is used only during extremely dry periods. During 1950 a total of 6,100,000 gal of well water was used.

Treatment: Softening with lime and soda ash, sedimentation, recarbonation, chlorination, ammoniation, and rapid sand filtration.

Rated capacity of treatment plant: 10,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,600,000 gal.

b Alkalinity as bicarbonate (HCO₃).

FARGO--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water	., ., .,	Raw water	Finished water
Silica (SiO ₂)	13	9.4	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 05	Total	314	155
Manganese (Mn)	. 00	. 00	Noncarbonate	129	74
Calcium (Ca)	66	30			
Magnesium (Mg)	36	19	Color	9	3
Sodium (Na)	23	49	pH	7.8	9. 1
Potassium (K)	7. 5	7.5	Specific conductance	1	1
Carbonate (CO ₃)	0	15	(micromhos at	Ì	İ
Bicarbonate (HCO ₃)	226	69	25 C.)	669	536
Sulfate (SO ₄)	167	165	Turbidity	40	1
Chloride (Cl)	5.5	8.5	Temperature (F.)	67	68
Fluoride (F)	. 1	.1	Date of collection	May 25,	May 25,
Nitrate (NO ₃)	1.8	.4	1	1951	1951
Dissolved solids	464	360		1	

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН а			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		350 178		8.0 9.0	8.4 9.8	7.6 8.8	273 129	431 226	155 89	50 · 0	1500 0	0 0

a 1949.

GRAFTON (Population, 4,901)

Ownership: Municipal.

Source: 4 artesian wells (1 to 4) 306, 306, 320, and 248 ft deep. The yield of the

wells is reported to be 95, 180, 90, and 230 gpm.

Treatment: Addition of polyphosphates (918-Y balls) to prevent scaling.

Rated capacity of treatment plant: 250,000 gpd.

Raw-water storage: 100,000 gal.

Finished-water storage: 100,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

(Analysis, in par	rts per million	i, by U. S. Geological Surve	;y <i>)</i>
	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	. 78 . 00	Hardness as CaCO ₃ : Total Noncarbonate	238 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	49 28 1,760 18	Color	2 7.5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	867 618 1,940 2.8 18 4,880	25 C.)	7,980 4 71 May 23, 1951

GRAND FORKS (Population, 26,836)

Ownership: Municipal; also supplies 300 people outside the city limits. Total population supplied, 27,136.

Source: Red Lake River, 60 percent of supply; Red River of the North, 40 percent of supply. Water from both rivers is mixed before entering the treatment plant.

Treatment: Prechlorination, softening with lime and soda ash, coagulation with alum, occasionally sodium aluminate, sedimentation, recarbonation, ammoniation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,500,000 gal.

There is considerable variation in the composition of the river water throughout the year.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Red Lake River a (raw water)	Red River of the Northa (raw water)	Raw water	Finished Water
Silica (SiO ₂)	10	2.0	9.8	3,8
Iron (Fe)			. 03	. 03
Manganese (Mn)			.00	.00
Calcium (Ca)	46	74	61	36
Magnesium (Mg)	20	40	23	1, 5
Sodium (Na)	19	38	10	33
Potassium (K)	1)	30	4.5	4.3
Carbonate (CO ₃)	r		0	
Bicarbonate (HCO ₃)	244	348	216	b 50
Sulfate (SO ₄) ······	31	111	88	114
Chloride (Cl)	2.0	20	4.0	9.0
Fluoride (F)	.0	.0	.1	. 1
Nitrate (NO ₃)	5.3	4.4	1.6	. 8
Dissolved solids	245	464	338	248
Hardness as CaCO ₃ :				
Total	197	349	246	96
Noncarbonate	0	64	69	55
Color			23	3
рН			7.6	8. 4
Specific conductance		ł		
(micromhos at 25 C.)			508	363
Turbidity		 '	55	3
Temperature (F.)			66	66
Date of collection	,	Nov. 6,	May 24,	May 24,
	1950	1950	1951	1951

Regular determinations at treatment plant, 1950 C

	A	kalini CaC	ity	рН			Hardness as CaCO ₃			Turbidity		
	Αv	(ppm) Max		Av	Max	Min	<u> </u>	ppm) Max	Min	Av	Max	Min
Raw water Finished water		330 120		1	8/2 9.8	7. 2 8. 8	1	425 170	85 44	10 1	120 5	. 5 0

a Analyzed by University of North Dakota.

b Includes the equivalent of less than 5 ppm of carbonate (CO₂).

c Fiscal year.

JAMESTOWN (Population, 10,697)

Ownership: Municipal.

Source: 6 drilled wells (1 to 6) 80 to 87 ft deep; 1 dug well, 36 ft deep and 25 ft in dameter. The yield of the wells is reported to be 300, 300, 300, 300, 500,

over 500, and 1,300 gpm.

Treatment: Aeration, softening with lime, coagulation with sodium aluminate, sedimentation, recarbonation, rapid sand filtration, chlorination, and addition of polyphosphate.

Rated capacity of treatment plant: 2, 250, 000 gpd.

Raw-water storage: None.

Finished-water storage: 2,610,000 gal.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(zmary bcb,	III par co	ber minn	on, by o. b. deologica	L Gar vey	
	Raw watera	Finished water a		Raw water a	Finished water ^a
Silica (SiO ₂)	26	14	Hardness as CaCO ₃ :		
Iron (Fe)	2.8	.07	Total	432	116
Manganese (Mn)	1.0	.00	Noncarbonate	55	40
Calcium (Ca)	107	35			
Magnesium (Mg)	40	6.9	Color	2	1
Sodium (Na)	113	110	pH	7.8	9.5
Potassium (K)	6.7	6.7	Specific conductance		
Carbonate (CO.)	0	25	(micromhos at	}	1
Bicarbonate (HCO ₂)	460	42	25 C.)	1,180	746
Sulfate (SO ₄)	233	222	Turbidity	35	0.2
Chloride (Cl)	38	38	Temperature (F.)	43	47
Fluoride (F)	.1	.1	Date of collection	Apr. 11,	Apr. 11,
Nitrate (NO ₂)	3.8	2.5	4	1951	1951
Dissolved solids	810	510		1	

Regular determinations at treatment plant, 1950

	-						-					
	Alkalinity as CaCO _s (ppm)			рН			Hardness as CaCO ₃ (ppm)			Temperature (°F)		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	392 130	l .		9. 2	9.3)	445 152	==		43 44		
		1	t i	ł	1	Ī	1	1	ł	ì		i

a Composite.

MANDAN (Population, 7, 298)

Ownership: Municipal; also supplies about 500 people outside the city limits. Total population supplied, about 7,800.

Source: Missouri River. The intake is about 5 miles north of Mandan.

Treatment: Plain sedimentation, aeration, softening with lime and soda ash, coagulation with alum and sodium aluminate, ammoniation, chlorination, sedimentation, recarbonation, polyphosphates (918-Y balls), and rapid sand filtration.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,500,000 gal.

MANDAN--Continued

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	11	9, 4	Hardness as CaCO ₃ :		
Iron (Fe)	. 03	. 03	Total	192	114
Manganese (Mn)		.00	Noncarbonate	50	56
Calcium (Ca)	49	32			
Magnesium (Mg)	17	8.3	Color	7	2
Sodium (Na)	57	63	pH	7.7	9.1
Potassium (K)		4.7	Specific conductance	l	
Carbonate (CO ₂)	0	10	(micromhos at		1
Bicarbonate (HCO ₃)	173	50	25 C.)	636	533
Sulfate (SO_4)	155	178	Turbidity	500	1
Chloride (Cl)		12	Temperature (F.)	63	62
Fluoride (F)	. 4	.4	Date of collection	May 17,	May 21,
Nitrate (NO ₃)		. 9		1951	1951
Dissolved solids	408	34 8			

Regular determinations at treatment plant

•	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
_	Av	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		222 125			8.3 9.2				142 89			

MINOT (Population, 22,032)

Ownership: Municipal.

Source: 7 wells (1, and 3 to 8) 131, 158, 158, 147, 139, 125, and 132 ft deep.

The yield of the wells is reported to be 533, 350, 450, 800, 800, 860, and 860 gpm. In 1950 well 7 furnished 75 percent of the supply, and wells 3, 4, and 5, the remainder.

Treatment: Chlorination.

Raw-water storage: 4, 100, 000 gal. Finished-water storage: 4, 100, 000 gal.

MINOT--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

Manganese (Mn)	3 2. 5 . 02
Silica (SiO ₂) 26 26 2 Iron (Fe) 2.6 2.7 Manganese (Mn) .04 .22	3 2. 5 . 02
Iron (Fe) 2.6 Manganese (Mn) .04 .04 .22	2.5 .02
Manganese (Mn)	. 02
Manganese (Mn)	
	4
Calcium (Ca) 86 112 8	
Magnesium (Mg) 29 42 3	3
Sodium (Na)	3
	4. 9
Carbonate (CO ₃) 0	0
Bicarbonate (HCO ₃)	3
Sulfate (SO ₄) 120 153 7)
Chloride (Cl) 240 156 12	3
Fluoride (F)	. 2
Nitrate (NO ₃) 3.0 2.2	. 8
Dissolved solids 1 280 980 97	2
Hardness as CaCO ₃ :	
Total 334 454 34	7
Noncarbonate 0 0)
Color	13
pH	7.7
Specific conductance	
	560
Turbidity	5
Temperature (F.)	48
Date of collection May 17, 1951 May 17, 1951 May 17,	
Depth (feet)	125
Diameter (inches)	16
	1948
Percent of supply	

VALLEY CITY (Population, 6,851)

Ownership: Municipal.

Source: 3 wells about 50 ft deep. The yield of each of the wells is reported to be 600 gpm. Water from the Sheyenne River is diverted each spring by a 24-in. pipeline to a gravel pit which is lower than the river. The water seeps from this gravel pit into the surrounding gravel, recharging the well supply.

Treatment: Chlorination. Water from the Sheyenne River is chlorinated as it is pumped into the gravel pit.

Raw-water storage: None.

Finished-water storage: Tank, 550,000 gal.

VALLEY CITY--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	27 . 02 . 37	Hardness as CaCO ₃ : Total Noncarbonate	406 60
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃)	98 39 83 5.9 0 422	Color	3 8.0 1.030
Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	187 29 . 1 4. 1 694	Turbidity Temperature (F.) Date of collection	1 46 Apr. 11, 1951

WILLISTON

(Population, 7,378)

Ownership: Municipal; also supplies about 650 people outside the city limits. Total population supplied, about 8,050.

Source: Missouri River for regular supply; 2 wells each 220 ft deep for auxiliary supply. The yield of the wells is reported to be 550 and 600 gpm.

supply. The yield of the wells is reported to be 550 and 600 gpm.

Treatment: Plain sedimentation, softening with lime (soda ash in winter), coagulation with alum and sodium aluminate, sedimentation, rapid sand filtration, ammoniation, and chlorination.

Rated capacity of treatment plant: 1,200,000 gpd.

Raw-water storage: 1,000,000 gal. Finished-water storage: 630,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water	., .,	Raw water	Finish ed water
Silica (SiO ₂)		.00	Hardness as CaCO ₃ : Total Noncarbonate	191 56	151 5 2
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₄)	50 16 55 4.9	41 12 57 4.2 16	Color	7.9	4 8. 9
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	165 161 8. 5	89 158 9.5	25 C.)	599 95 60 May 17,	553 20 64 May 17,
Nitrate (NO ₃) Dissolved solids	1.5 394	.8 374		1951	1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness. as CaCO ₃ (ppm)			Temperature (°F)			
	Αv	Max	Min	Αv	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		170 68	120 53				257 137	340 214	205 68	40 40	54 54	32 32

OKLAHOMA 305

ADA (Population, 15,995)

Ownership: Municipal.

Source: Byrd's Mill Spring, in watershed of Clear Boggy Creek, tributary to Muddy Boggy Creek. The water plant is located just south of the city limits at the spring.

Treatment: Chlorination. Raw-water storage: --

Finished-water storage: Elevated storage, 1,000,000 gal.

The water plant is just south of the city limits at the spring. The water is pumped from the storage reservoir at the plant to the distribution mains.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	7.7 .0	Hardness as CaCO ₃ : Total Noncarbonate	362 20
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₂)	81 39 4.3 .8	Color	5 7. 9
Bicarbonate (HCO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	0 418 8.6 5.5 .0 4.0	Z5 C.)	608 May 3, 1951

ALTUS (Population, 9,735)

Ownership: Municipal.

Source: North Fork of Red River impounded in Altus-Lugert Reservoir about 10 miles north of Altus. Water from the reservoir is fed into City Lake just north of the city limits.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: Altus-Lugert Reservoir, 49,399,000,000 gal; allocation to

city of Altus, 1,564,084,000 gal. Finished-water storage: 1,700,000 gal.

The treatment plant is located at north edge of the city limits at City Lake.

ALTUS--Continued ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	, F	y wy c. c. decological bulle	<i>J</i> /
	Finished water		Finished water
Silica (SiO ₂)	7.6	Hardness as CaCO ₃ : Total	606 49 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	154 54 162 7. 2	Color pH Specific conductance (micromhos at	0 7. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 141 522 215	25 C.)	1,780 Feb. 7,
Dissolved solids	1, 190		1951

Regular determinations at treatment plant, 1950

		lkalir s CaC (ppm	co,	рH			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water			80 100		8. 4 8. 4		480 490	600 600	240 280			

ARDMORE (Population, 17,890)

Ownership: Municipal.

Source: Hickory Creek, impounded in Mountain Lake, and a small lake in a natural depression, both in watershed of Caddo Creek. Mountain Lake overflows into City Lake.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination. Copper sulfate is used for the control of algae.

Rated capacity of treatment plant: 5,500,000 gpd.

Raw-water storage: Mountain Lake and small natural lake, 750, 760, 700 gal. Finished-water storage: 1, 720, 000 gal.

The treatment plant is about 5 miles south of the city at City Lake.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	3.4 .02	Hardness as CaCO ₃ : Total	148
Manganese (Mn)		Noncarbonate	15
Calcium (Ca)	49 6.3	Color	5
Sodium (Na) Potassium (K)	7.9	pHSpecific conductance	7. 7
Carbonate (CO ₂)	1.8 0	(micromhos at	
Bicarbonate (HCO ₃)	163	25 C.)	313
Sulfate (SO ₄)	22	Turbidity	
Chloride (Cl)	8.2	Temperature (F.)	
Fluoride (F)	.1	Date of collection	May 3,
Nitrate (NO ₃)	.5	•	1951
Dissolved solids	181		

OKLAHOMA

BARTLESVILLE (Population, 19, 228)

Ownership: Municipal.

Source: Butler Creek impounded in Lake Hudson, in watershed of Verdigris

River. Auxiliary supply, Caney River.

Treatment: Coagulation with alum and lime, sedimentation, carbon at times, rapid sand filtration, and chlorination. Copper sulfate when needed for algae control.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 1,726,000,000 gal. Finished-water storage: 1,400,000 gal.

The treatment plant is at the northern boundary of the city.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(F	on, by o. b. deologica		
	Finished water	Finished water		Finished water	Finished water
Silica (SiO ₂)	0.6	2.0	Hardness as CaCO ₃ :		
Iron (Fe)	. 10	. 26	Total	69	69
Manganese (Mn)			Noncarbonate	19	18
Calcium (Ca)		22			
Magnesium (Mg)	4.1	3.5	Color	15	15
Sodium (Na)		4.7	рН	8.1	7.6
Potassium (K)	3.6	2.6	Specific conductance		
Carbonate (CO ₂)		0	(micromhos at		
Bicarbonate (HCO.)	61	62	25 C.)	171	170
Sulfate (SO ₄)	20	19	Turbidity		
Chloride (Cl)		10	Temperature (F.)		
Fluoride (F)		.1	Date of collection	May 16,	July 25,
Nitrate (NO.)				1951	1951
Dissolved solids		103			

Regular determinations at treatment plant, 1950

	•						-						
	as	kalini s CaC (ppm)			рН			Hardness as CaCO ₃ (ppm)			Temperature (° F)		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min	
Raw water Finished water	51 48	54 51	45 44	7.3 8.1	7. 5 8. 7	7. 1 7. 7	45 60		40 58	50 48		45 44	

BLACKWELL (Population, 9, 199)

Ownership: Municipal.

Source: Chikaskia River. The water is taken directly from the River to the treatment plant located at south edge of city.

Treatment: Coagulation with alum and lime, sedimentation, carbon at times, rapid sand filtration, and chlorination. Copper sulfate when needed for algae control.

Rated capacity of treatment plant: 2,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 500,000 gal.

BLACKWELL--Continued ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	4.0 .0 	Hardness as CaCO ₃ : Total Noncarbonate	25 6 77
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	70 20 39 3.6	ColorpHSpecific conductance	5 7.8
Carbonate (CO _s) Bicarbonate (HCO _s) Sulfate (SO ₄) Chloride (Cl)	0 219 108 37	(micromhos at 25 C.) Turbidity Temperature (F.)	644
Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 3 1. 4 402	Date of collection	May 17, 1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Ą٧	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		270 250		8. 1 7. 9	8.3 8.2		250 250	306 310				

CHICKASHA (Population, 15,842)

Ownership: Municipal.

Source: Washita River. The water is taken directly from the river to the treatment plant at northeast edge of town at the river.

Treatment: Coagulation with alum and lime, sedimentation, carbon at times,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,250,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	15 .0 	Hardness as CaCO ₃ : Total Noncarbonate	748 484
Calcium (Ca)	196 63 78 4.8 0 322 529 79 .1	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	5 7.5 •1,520 Nov. 10, 1950

CHICKASHA -- Continued Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO _s (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water Finished water				8. 2 7. 4								

CUSHING (Population, 8,414)

Ownership: Municipal.

Source: Big Creek impounded in Cushing Lake.

Treatment: Coagulation with alum and lime, sedimentation, carbon at times,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: 890,000,000 gal. Finished-water storage: 1,000,000 gal.

The treatment plant is located 7.5 miles northwest of the city at the Lake.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	4.4 .03	Hardness as CaCO ₃ : Total Noncarbonate	124 4
Calcium (Ca)	30 12 15 4.0	Color	5 8. 4
Bicarbonate (HCO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	6 134 11 24 .3 1.4	Turbidity Temperature (F.)	312 58 Jan. 23, 1951

	Alkalinity as CaCO ₃ (ppm)		р Н			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water					8.5	7.1	-				800	40
Finished water				7.4	7.9	6.9				25	25	25

DUNCAN (Population, 15, 325)

Ownership: Municipal.

Source: Clear Creek impounded in Clear Creek Lake (sometimes called Chisholm Trail Lake) 11 miles northeast of the city. Auxiliary supply, Fitzpatrick Creek impounded in Lake Duncan, 8 miles northeast of the city.

Treatment: Coagulation with alum and lime, sedimentation, carbon at times,

rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 1,750,000 gpd.

Raw-water storage: Clear Creek Lake, 3,128,000,000 gal; Lake Duncan, 1,629,000,000 gal.

Finished-water storage: 3,620,000 gal.

The treatment plant is about 5 miles east of the city.

At the time of sampling the entire supply was being taken from Clear Creek Lake. Lake Duncan is seldom used.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	1.2	Hardness as CaCO ₃ :	
Iron (Fe)	.0	Total	222
Manganese (Mn)		Noncarbonate	8 9
Calcium (Ca)	61		
Magnesium (Mg)	17	Color	0
Sodium (Na)	6.5	pH	8.5
Potassium (K)	4.1	Specific conductance	
Carbonate (CO ₃)		(micromhos at	
Bicarbonate (HCO ₃)	a ₁₆₂	25 C.)	443
Sulfate (SO_4)	102	Turbidity	
Chloride (Cl)	6.5	Temperature (F.)	
Fluoride (F)	.1	Date of collection	Feb. 8,
Nitrate (NO ₃)	1.1		1951
Dissolved solids	280	 	

	as	kalini s CaC (ppm)	O ₃	рН			as	rdnes CaC(ppm)		Turbidity		
Pow water	Αv	Max	Min		Max			Max	Min	-	Max	Min
Raw water Finished water				8. 0 7. 9		7.6 7.1						

^aIncludes the equivalent of less than 5 ppm of carbonate (CO₃).

DURANT (Population, 10,541)

Ownership: Municipal. Source: Blue River.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, chlorination, and copper sulfate when needed.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: --

Finished-water storage: 640,000 gal.

The raw water intake and the treatment plant are located near the town of Armstrong about 5 miles from Durant.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	7.6 .0	Hardness as CaCO ₃ : Total Noncarbonate	267 50
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	61 28 13 1.7	Color	5 7.6
Bicarbonate (HCO _s) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO _s) Dissolved solids	265 55 10 .2 1.4 312	25 C.)	512 May 3, · 1951

EL RENO (Population, 10,991)

Ownership: Municipal.

Source: 11 wells, 51 to 55 ft deep, all located in the same general area at the north edge of the city limits. The yield of the wells is reported to range from 100 to 530 gpm.

Treatment: Softening with lime and soda ash, sedimentation (upward flow cylindrical tanks), recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: --

Finished-water storage: 1,500,000 gal.

The treatment plant is near the wells.

EL RENO--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw Water ^a	Finished water ^a		Raw Water ^a	Finished water ^a
Silica (SiO ₂)	18	14	Hardness as CaCO ₃ :		
Iron (Fe)	.0	. 02		370	127
Manganese (Mn)			Noncarbonate	146	63
Calcium (Ca)	94	26			
Magnesium (Mg)	33	15	Color	5	0
Sodium (Na)	96	131	p H	7.5	7.9
Potassium (K)	6. 2	5.6	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO.)	273	77	25 C.)	1,080	878
Sulfate (SO ₄)	185	188	Turbidity	´	
Chloride (CI)	115	115	Temperature (F.)		
Fluoride (F)	. 6	.7	Date of collection	Feb. 8,	Feb. 8,
Nitrate (NO ₃)		1.0		1951	1951
Dissolved solids	688	534			1001

Regular determinations at treatment plant, 1950

		lkalii s CaC (ppm	O ₃	р Н		Hardness as CaCO ₃ (ppm)			Turbidity			
	A٧	Max	Min	Av	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water Finished water		288 75	204 55				350 138	528 150	304 120			

^aWells 10, 13, 17, and 21 pumping at time of the collection of the samples.

ENID (Population, 36,017)

Ownership: Municipal; also supplies Vance Air Force Base.

Source: Wells (6 well fields): Carrier Field, 16 wells (1 to 16, well 14 abandoned) 65 to 75 ft deep; Northwest Field, 10 wells (1 to 10, well 4 abandoned) approximately 60 ft deep; Van Buren Field, 8 wells (1 to 8, wells 4 and 7 abandoned) approximately 55 ft deep; 2 wells (1 and 2) back of Water Plant, 45 ft deep; 5 wells (1 to 5) Ames Terrace, Frisco-Right-of-Way, approximately 60 ft deep; 7 wells (1 to 7) Ames Terrace, between the towns of Ames and Drummond, approximately 120 ft deep. (The wells of the last named group are not being used because of litigation.) The yield of the wells being used is reported to range from 50 to 225 gpm, which is 60 percent of capacity.

Treatment: Chlorination.

Rated capacity of treatment plant: 7,000,000 gpd.

Raw-water storage: --

Finished-water storage: 16,000,000 gal.

The water from all the wells is mixed at the plant before being pumped to the city and distribution. The analysis given represents mixed water from 31 wells being pumped at the time of the collection of the sample.

OKLAHOMA 313

ENID--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	23 .02	Hardness as CaCO ₈ : Total Noncarbonate	172
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	51 11 58 3.2	Color	0 7. 1
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	266 21 39 . 1	25 C.)	575 May 17,
Nitrate (NO ₃) Dissolved solids	9. 1 346		1951

GUTHRIE (Population, 10, 113)

Ownership: Municipal.

Source: Stream tributary to Cottonwood Creek impounded in Lake Guthrie.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration,

and chlorination.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: 1,226,000,000 gal. Finished-water storage: 750,000 gal.

The treatment plant is located at the south edge of the city limits.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	1.6 .0	Hardness as CaCO ₃ : Total Noncarbonate	199 9
Calcium (Ca)	45 21 11 4.1	Color	0 8. 0
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	0 232 18 15	25 C.) Turbidity Temperature (F.)	417
Fluoride (F) Nitrate (NO ₃) Dissolved solids	.0 .1 231	Date of collection	Apr. 24, 1951

HENRYETTA (Population, 7,987)

Ownership: Municipal; also supplies Dewar. Total population supplied, about 9.000.

Source: Wolf Creek impounded in Lake Henryetta, about 3 miles east of the city. Treatment: Coagulation with alum and lime, sedimentation, carbon at times, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 4,750,000 gpd.

Raw-water storage: 2,085,000,000 gal. Finished-water storage: 2,000,000 gal.

The treatment plant is located at the lake.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	1.4 .24	Hardness as CaCO ₃ : Total Noncarbonate	67 4 3
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	22 3.0 5.6 2.0	Color pH Specific conductance (micromhos at	5 8. 2
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	0 30 39 7.5	25 C.)	157 May 2,
Nitrate (NO ₃) Dissolved solids	1.3 99		1951

LAWTON (Population, 34,757)

Ownership: Municipal; also supplies Fort Sill and Medicine Park. Total population supplied, about 43,500.

Source: Medicine Bluff Creek impounded in Lake Lawtonka, about 15 miles northwest of Lawton at the town of Medicine Park.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 12,500,000 gpd.

Raw-water storage: 13,686,000,000 gal. Finished-water storage: 6,500,000 gal.

The treatment plant is at Medicine Park.

LAWTON--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	2.4 .0	Hardness as CaCO ₃ : Total Noncarbonate	144 12
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	44 8.2 9.1 2.4	ColorpHSpecific conductance (micromhos at	0 7.8
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	160 19 10 .1	25 C.)	307 Feb. 7, 1951
Dissolved solids	175		

MCALESTER (Population, 17,878)

Ownership: Municipal; also supplies a small population outside the city limits.

Total population supplied, about 17, 900.

Source: Bull, Bodark, and Lily Pad Creeks impounded in Lake McAlester, 6 to 8 miles northwest of the city.

Treatment: Coagulation with alum and lime, sedimentation, activated carbon at times, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: 4,497,000,000 gal. Finished-water storage: 3,400,000 gal.

The treatment plant is about 3 miles north of the State Penitentiary.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	1.4 .05	Hardness as CaCO ₃ : Total Noncarbonate	45 20
Calcium (Ca)	13 3.0 6.2 2.0 0	Color pH Specific conductance (micromhos at	5 7.9
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	30 28 5.5	25 C.)	120 May 2, 1951
Dissolved solids	. 2 74		1991

MCALESTER--Continued

Regular determinations at treatment plant, 1950

		lkalin s CaC (ppm	CO ₃	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		20 24	32 36			6.8 8.0	22 50	28 60	16 30	!!		

MIAMI (Population, 11,801)

Ownership: Municipal.

Source: 5 wells (1 to 5), 1,233, 1,000, 1,252, 1,116, and 1,345 ft deep. The yield of the wells is reported to be 300, 300, 350, 470, and 510 gpm.

Treatment: None. Storage: 2,000,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Wells 3, 4 a (composite)	Well 3	Well 4
Silica (SiO ₂)	9. 1		
Iron (Fe)	.01		
Manganese (Mn)			
Calcium (Ca)			
Magnesium (Mg)	14		
Sodium (Na)	29		
Potassium (K)	2. 5		
Carbonate (CO ₃)	0		
Bicarbonate (HCO ₃)	149	152	148
Sulfate (SO ₄)	15		
Chloride (Cl)	42	120	16
Fluoride (F)	.3		
Nitrate (NO ₃)	1.4		
Dissolved solids	217	326	169
Hardness as CaCO ₃ :			
Total	135	152	134
Noncarbonate	13	27	13
Color	5		
Specific conductance			
(micromhos at 25 C.)	386	663	305
Turbidity			
Temperature (F.)			
Date of collection	May 15, 1951	May 15, 1951	May 15, 1951
Depth (feet)		1, 252	1, 116
Diameter (inches)			15
Date drilled			1946
Percent of supply			

^aPumping at the time of the collection of the samples.

OKLAHOMA 317

MIDWEST CITY (Population, 10, 166)

Ownership: Municipal.

Source: 6 wells (1 to 6) each about 750 ft deep. One connecting line between Midwest City and Tinker Field Air Force Base in case of emergency at either location. All wells pump directly to the distribution mains as well as to the storage reservoir.

Treatment: Chlorination (at each well).

Raw-water storage: None.

Finished-water storage: Reservoir, 1,000,000 gal.

Partial analysis of a sample from each well indicates that the wells yield water of about the same chemical composition. The partial analyses given represent water from wells with the maximum and minimum concentration of dissolved solids.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 4	Well 6	Finished water ^a (composite)
Silica (SiO ₂)			12
Iron (Fe)			-0.
Manganese (Mn)			
Calcium (Ca) ······			21
Magnesium (Mg)			14
Sodium (Na)			36
Potassium (K)			1.4
Carbonate (CO ₃)			0
Bicarbonate (HCO ₃)	218	202	205
Sulfate (SO ₄)			7.4
Chloride (Cl)	12	3.0	6.2
Fluoride (F)			. 2
Nitrate (NO ₃)			1.1
Dissolved solids	201	149	181
Hardness as CaCO ₃ :			
Total	150	102	110
Noncarbonate	0	0	0
Color			5
рН			8, 2
Specific conductance			0.2
(micromhos at 25 C.)	376	321	330
Turbidity		021	
Temperature (F.)			
Date of collection	May 4, 1951	May 4, 1951	May 4, 1951
Depth (feet)	750	750	
Date drilled	0	8	
		1950	
Percent of supply			

^a Collected from storage reservoir.

MUSKOGEE (Population, 37, 289)

Ownership: Municipal. Source: Neosho River.

Treatment: Prechlorination, coagulation with alum and lime, softening with excess lime, sedimentation, recarbonation, rapid sand filtration, and post-

chlorination.

Rated capacity of treatment plant: 7,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 10,000,000 gal.

The water is taken directly from the river to the treatment plant northeast of Muskogee just above the confluence of the Neosho with the Arkansas River.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

			5, D, O. D. GOOLOBIO		
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	9. 1	7.1	Hardness as CaCO ₃ :		
Iron (Fe)	. 14	. 05	Total	120	88
Manganese (Mn)			Noncarbonate	35	50
Calcium (Ca)		24			
Magnesium (Mg)		6.9	Color	100	5
Sodium (Na)		8.6	p H	7.7	9.3
Potassium (K)	2.9	2.5	Specific conductance		
Carbonate (CO ₃)	0	8	(micromhos at	1	
Bicarbonate (HCO ₃)	104	30	25 C.)	277	217
Sulfate (SO ₄)	42	48	Turbidity		
Chloride (Cl)		12	Temperature (F.)	51	52
Fluoride (F)		.1	Date of collection	Nov. 29,	Nov. 29,
Nitrate (NO ₃)		2.4		1951	1951
Dissolved solids	180	137	1]	

Regular determinations at treatment plant, 1950

,,,												
		lkalir s CaC (ppm	CO ₃	рH		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Αv	Max	Min
Raw water	85	90	· 68	7.8	8.2	6.0	115	128	88	35	300	20
Finished water	30	40	23	8.7	9.4	8.4	75	90	56			

NORMAN (Population, 27,006)

Ownership: Municipal; University of Oklahoma. The University has its own wells and supply system and serves an estimated total population of 15,000.

Source: Municipal; 12 wells (1 to 12), 535 to 671 ft deep. Well 7 was not being pumped at the time of the collection of sample since it was being used as an observation well. Two additional wells were under construction. Several wells pump directly into the distribution mains.

Treatment: None. Storage: 1,000,000 gal.

OKLAHOMA 319

NORMAN -- Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

		, , ,	07
	Municipal wells (composite)		Municipal wells (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	9.7 .02	Hardness as CaCO ₃ : Total Noncarbonate	8
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃)	2.0 .7 207 3.2 34	Color	5 9.1
Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	359 96 13 .3 .5	Turbidity Temperature (F.) Date of collection	877 May 21, 1951

OKLAHOMA CITY (Population, 243, 504)

Ownership: Municipal.

Source: North Canadian River by diversion into two off-channel reservoirs, Lake Hefner and Lake Overholser, approximately 8 miles northwest of the center of the city.

Treatment: (Both plants) softening with excess lime, coagulation with alum, carbon at times for taste and odor control, sedimentation, recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plants: Lake Hefner Plant, 24,000,000 gpd; Lake Overholser Plant, 15,000,000 gpd.

Raw-water storage: Lake Hefner, 24,438,800,000 gal; Lake Overholser, 5,213,600,000 gal.

Finished-water storage: Elevated, 5,500,000 gal; other, 25,500,000 gal.

Lake Overholser treatment plant is in the city and water from this plant is generally served in the central and southern parts of the city.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Analyses,	in parts	ber mmi	on, by U. S. Geologica	1 Survey)	
	Raw water ^a	Finished water ^a		Raw water ^a	Finished water ^a
Silica (SiO ₂)		1.7	Hardness as CaCO ₃ :	100	00
Iron (Fe)	. 12	.0	Total	183	90
Manganese (Mn)			Noncarbonate	39	49
Calcium (Ca)	47	18			
Magnesium (Mg)	16	11	Color	60	5
Sodium (Na)	50	49	p H	8.2	10.4
Potassium (K)	5. 4	5.4	Specific conductance		
Carbonate (CO ₂)	0	b ₁₆	(micromhos at		
Bicarbonate (HCO.)	176	0	25 C.)	596	479
Sulfate (SO ₄)	70	73	Turbidity		
Chloride (Cl)	60	64	Temperature (F.)		·
Fluoride (F)	. 3	.3	Date of collection	May 26,	May 26,
Nitrate (NO ₃)	1.3	.5		1951	1951
Dissolved solids	364	262			

a Lake Hefner.

b Sample contained 5 ppm of Hydroxide (OH).

320 INDUSTRIAL UTILITY OF PUBLIC WATER SUPPLIES IN THE UNITED STATES, 1952

OKLAHOMA CITY--Continued Regular determinations at treatment plant, 1950°C

	as	kalini s CaC (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	A٧	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water		1	136	8.5				1	175	14	25	10
Finished water	39	53	26	10.3	11.0	9.6	90	100	73			

^c Fiscal year, July 1949 to June 1950.

OKMULGEE (Population, 18,317)

Ownership: Municipal.

Source: Salt Creek impounded in Lake Okmulgee.

Treatment: Coagulation with alum and lime, sedimentation, carbon when neces-

sary, rapid sand filtration; and chlorination. Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 4,300,000,000 gal. Finished-water storage: 2,150,000 gal.

The treatment plant is about 3 miles west of the city.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	5. 0 . 20	Hardness as CaCO ₃ :	68
Manganese (Mn)		Noncarbonate	35
Calcium (Ca)	17 6. 2	Color	25
Sodium (Na) Potassium (K)	28 2.1	pH Specific conductance	8.1
Carbonate (CO ₃) Bicarbonate (HCO ₃)	0 40	(micromhos at 25 C.)	289
Sulfate (SO ₄) Chloride (Cl)	-16	Turbidity Temperature (F.)	
Fluoride (F)	58 .0	Date of collection	52 Nov. 29,
Nitrate (NO ₃) Dissolved solids	. 2 171		1951

	as	kalini CaC (ppm)	•	рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		22 36	20 28	7. 0 8. 6	7. 0 9. 0	6.8 8.0	 66	 70	 60	75 17	140 20	50 15

PONCA CITY (Population, 20, 180)

Ownership: Municipal.

Source: Turkey Creek impounded in Lake Ponca, 50 percent of supply; 5 wells,

all approximately 60 ft deep, 50 percent of supply.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, chlorination, and ammoniation.

Rated capacity of treatment plant: 8,000,000 gpd.

Raw-water storage: Lake Ponca, 4,865,000,000 gal.

Finished-water storage: 2,500,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(Imaryoco, in parts pe	initiation, by C.	U. UUU.UB.	T
	Lake Ponca	Wells	Finished
	(raw water)	(raw water) ^a	water ^b
	l ' '	(2	
Silica (SiO ₂)			5. 0
Iron (Fe)			.0
Manganese (Mn)			
Calcium (Ca) ······		121	56
Magnesium (Mg)	6.0	97	9.8
Sodium (Na))		C 27
Potassium (K)) 11	132	4.4
Carbonate (CO ₂)	0	0	o i
Bicarbonate (HCO ₃)	109	486	206
Sulfate (SC ,	11	361	30
Chloride (Cl)	7.0	126	32
Fluoride (F)		120	.1
Nitrate (NO ₃)	6.5	44	1.0
Dissolved solids	134	1,120	268
Hardness as CaCO.:	14,1	1,120	
Total	92	701	180
Noncarbonate		303	11
	3	303	
Color			5
pH	~~		7.9
Specific conductance			7.9
(micromhos at 25 C.)	910	1 700	469
		1,700	409
Turbidity			
Temperature (F.)		T1 01 1050	Non 17 1051
Date of collection	July 21, 1950	July 21, 1950	May 17, 1951

	as	kalini S CaC (ppm)		рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water					8. 2 7. 5		125 200		120 191	15 	20	10

^aComposite (wells 1 to 4).

^bLake Ponca 50 percent; wells (1, 2, and 4) 50 percent.

c Lake Ponca.

SAPULPA (Population, 13,031)

Ownership: Municipal.

Source: Rock Creek impounded in Lake Sahoma.

Treatment: Coagulation with alum and lime, sedimentation, carbon at times, rapid sand filtration, and chlorination. Copper sulfate is used for algae con-

trol when needed.

Rated capacity of treatment plant: 2,500,000 gpd.

Raw-water storage: 977, 500, 000 gal. Finished-water storage: 2,475,000 gal.

The treatment plant is at the east edge of the city limits.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

			<u> </u>
	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	3.9 .02	Hardness as CaCO ₂ : Total Noncarbonate	98 57
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	29 6.3 17 2.8	ColorpHSpecific conductance (micromhos at	20 7. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	50 50 31 . 1	25 C.) Turbidity Temperature (F.) Date of collection	297 May 15, 1951
Dissolved solids	1.7 · 181		1931

SEMINOLE (Population, 11,863)

Ownership: Municipal.

Source: 15 wells (1 to 15), 525 to 763 ft deep, all within the city.limits. The

yield of the wells is reported to range from 40 to 240 gpm.

Treatment: Chlorination of water from 9 wells pumped through the main pumping station. Other wells pump directly into distribution system and are not chlorinated.

Rated capacity of treatment plant: 7,300,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,500,000 gal.

Wells 10 and 11 were not in use at time of collection of samples.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(miaryses, in p	arro her m	iiiioii, by c	. D. GCO10	Brear Day ve	37
	Wells 1 to		•		Finished
	9 (com-	Well 12	Well 13	Well 15	water
	posite)				(city tap)
Silica (SiO ₂)					9.8
Iron (Fe)					. 02
Manganese (Mn)					
Calcium (Ca)					36
Magnesium (Mg)					8.2
Sodium (Na)					40
Potassium (K)					2.5
Carbonate (CO ₃)					0
Bicarbonate (HCO ₃)	188	226	194	180	192
Sulfate (SO ₄)					47
Chloride (Cl)	4.0	6.0	4.0	3.5	4, 5
Fluoride (F)					, 3
Nitrate (NO ₃)					. 2
Dissolved solids	201	214	202	230	244
Hardness as CaCO ₃ :					
Total	116	52	128	102	124
Noncarbonate	0	0	0	0	0
Colon		•			0
Color	7-				7.8
pH Specific conductance					1.0
	394	411	396	408	390
(micromhos at 25 C.)	394	411	0.00	400	350
Turbidity					
Temperature (F.) Date of collection	May 1,	May 1.	May 1,	May 1,	May 1,
Date of confection	1951	1951	1951	1951	1951
	1901	1991	1991	1001	1901
Depth (feet)	620-763	63 8	750	732	
Diameter (inches)	$8-10\frac{3}{4}$	$10\frac{3}{4}$	$10\frac{3}{4}$	$10\frac{3}{4}$	
Date drilled				1950	
Percent of supply					
	l				<u> </u>

SHAWNEE (Population, 22,948)

Ownership: Municipal.

Source: South Deer Creek impounded in Shawnee City Lake.

Treatment: Coagulation with alum and lime, sedimentation, carbon at times, rapid sand filtration, and chlorination. Copper sulfate is used for algae con-

trol when necessary.

Rated capacity of treatment plant: 4,500,000 gpd.

Raw-water storage: 7,700,000,000 gal. Finished-water storage: 5,250,000 gal.

The treatment plant is at the southwest edge of the city limits.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

			<u> </u>
	Finished water		Finished water
Silica (SiO ₂)	4.3 .11	Hardness as CaCO ₃ : Total Noncarbonate	74 24
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	19 6.5 9.0 2.3	Color	10 7.3
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	61 25 11 .4	25 C.) Turbidity Temperature (F.) Date of collection	185 May 1, 1951
Dissolved solids	108]	

	Al	kalini										
	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		74	 58				78	90	 68	140	175	120
		74	1 1			1			1]		

OKLAHOMA 325

STILLWATER (Population, 20, 238)

Ownership: Oklahoma A. & M. College; supplies about 1,800 people outside the city limits. Total population supplied, about 22,000.

Source: Lake Carl Blackwell, approximately 10 miles west of Stillwater. Emergency supply, Boomer Lake, just north of the city limits.

Treatment: Coagulation with ferrous sulfate, softening with excess lime, sedimentation, recarbonation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: 17, 968,000,000 gal. Finished-water storage: 450,000 gal.

The treatment plant is approximately 1 mile west of the College.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	2. 9	2. 3	Hardness as CaCO ₃ :		
Iron (Fe)	. 36	.02	Total	133	60
Manganese (Mn)			Noncarbonate	3	21
Calcium (Ca)	32	14			
Magnesium (Mg)	13	6.0	Color		5
Sodium (Na)	17	18	pH	8.0	9.8
Potassium (K)	4.7	4.3	Specific conductance		
Carbonate (CO ₃)	o o	13	(micromhos at		
Bicarbonate (HCO.)	159	21	25 C.)	3 2 1	2 2 1
Sulfate (SO ₄)	15	26	Turbidity		
Chloride (Cl)	20	26	Temperature (F.)	54	47
Fluoride (F)		.3	Date of collection	Jan. 12,	Dec. 20,
Nitrate (NO.)	. 8	.7	1	1951	1950
Dissolved solids	199	121			

		lkalir s CaC (ppm	O ₃		р Н		Hardness as CaCO ₃ (ppm)			Turbidity		
_	Av	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water				8. 2 8. 5		7. 9 6. 2	1	155 142	113 36	39 	105 	25

TULSA (Population, 182, 740)

Ownership: Municipal; supplies Skiatook, Sperry, Turley, and other consumers outside the city limits. Total population supplied, about 220,000. The city also supplies raw water to Owasso and Spavinaw.

Source: Spavinaw Creek impounded in Spavinaw Lake about 70 miles northeast of Tulsa.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 40,000,000 gpd.

Raw-water storage: 10,326,000,000 gal. Finished-water storage: 27,500,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	4.3 .0	Hardness as CaCO ₃ : Total Noncarbonate	91 7
Calcium (Ca)	34 1.4 2.3 1.1 0	Color	5 7. 7
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	102 6.1 5.8 .1 1.4	25 C.)	191 May 26, 1951

	Alkalinity as CaCO _{3.} (ppm)		р Н			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water		92 89	85 80	8.0 7.6		7.8 7.5		 94	 93	16 . 2	61 1, 3	6 . 1

OREGON 327

ALBANY (Population, 10,115)

Ownership: Mountain States Power Co.; supplies also about 330 people outside the city limits. Total population supplied, about 10,450.

Source: South Santiam River (through power canal).

Treatment: Coagulation with alum and lime, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 890,000 gal.

ANALYSIS

(Analysis, in parts per million, by Elgin Water Softener Corp., Elgin, Ill.)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	17	Hardness as CaCO ₃ : Total Noncarbonate	42 15
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	15 1.2 4.3 0	Color pH Specific conductance (micromhos at	
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	33 19 3.6 a.2 b	25 C.)	Apr. 12,

a Determination by Oregon State Board of Health, November, 1950.

ALTAMONT (Population, 9,419)

Ownership: Supplied by Klamath Falls. (See Klamath Falls.)

ASTORIA (Population, 12,331)

Ownership: Municipal; supplies also Tongue Point Naval Station and some other consumers outside the city limits. Total population supplied, about 14,800. Source: Bear Creek and tributaries impounded in 3 artificial lakes. Intake located about 11 miles east of Astoria.

Treatment: Chlorination and occasional use of copper sulfate for algae control.

Rated capacity of treatment plant: 5, 200,000 gpd.

Raw water storage: 200,000,000 gal. Finished water storage: 24,000,000 gal.

The color and turbidity of the water are variable, being highest from September through November.

b Sum of determined constituents.

ASTORIA -- Continued

ANALYSIS

(Analysis, in parts per million, by 13th Naval Dist. Sanitation Engineering Lab.)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	28 . 18 0 6. 1	Hardness as CaCO ₃ : Total Noncarbonate	27 0
Calcium (Ca)	$\begin{array}{c} & 0.1 \\ 2.8 \\ 7.6 \\ 0 \end{array}$	Color pH Specific conductance (micromhos at	10 7. 0
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	37 3.2 6.8 a.1 	Turbidity Temperature (F.) Date of collection	June 7, 1950

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рH			Hardness as CaCO ₃ (ppm)			Temperature (°F)			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	A₹	Max	Min
Raw water Finished water				7.0 6.9	7.6 7.0					50 49	67 62	37 35

^aFrom other analyses.

BAKER

(Population, 9,471)

Ownership: Municipal; supplies also about 500 people outside the city limits. Total population supplied, about 10,000.

Source: Goodrich Lake, Marble Creek, Pine Creek, and Elk Creek. The main pipeline is from Goodrich Lake, with a feeder pipeline from each of the creeks.

Treatment: Chlorination and occasional ammoniation.

Rated capacity of treatment plant: 10,000,000 gpd.

Raw-water storage: 120,500,000 gal.

Finished-water storage: 2 reservoirs, 5,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	13 . 03 	Hardness as CaCO ₃ : Total Noncarbonate	37 0
Calcium (Ca)	12 1.7 .1.4 1.0	Color pH Specific conductance (micromhos at	3 7. 4
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 47 2.4 .4 .0	25 C.)	80 49 June 19, 1951
Dissolved solids	56		

OREGON 329

BEND (Population 11, 409)

Ownership: Municipal; supplies also about 300 people outside the city limits.

Total population supplied, about 11,700.

Source: Tumalo Creek. Treatment: Chlorination. Raw water storage: None.

Finished water storage: 1,635,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	.03	Hardness as CaCO ₂ : Total Noncarbonate	11 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO2)	3.5 .6 2.0 .8 0	Color pH Specific conductance (micromhos at	7 6.7
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	8 .8 .9 .0	25 C.)	31 46 June 18, 1951
Dissolved solids	37		1331

COOS BAY (Population, 6, 223)

Ownership: Municipal; supplies also North Bend, Eastside, and about 1,500 consumers outside the city limits. Total population supplied, about 15,200.

Source: Pony Creek.

Treatment: Prechlorination, color removal by coagulation with alum and lime, rapid sand filtration, and aeration (spray).

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: 658,000,000 gal.

Finished-water storage: 5,500,000 gal. Present construction program will provide an additional 4,500,000 gal.

ANALYSES
(Analyses, in parts per million, by U. S. Geological Survey)

(0.000,		P	, b) 0. b. decappion		
	Raw water ^a	Finished water		Raw water ^a	Finished water
Silica (SiO ₂)		6.6	Hardness as CaCO ₃ :		
Iron (Fe)	. 08	.04	Total	9	37
Manganese (Mn)			Noncarbonate	l 0	18
Calcium (Ca)	1.8	12	•		
Magnesium (Mg)	1.0	1.8	Color	100	6
Sodium (Na)	5.9	8.3	pH	6.1	7.1
Potassium (K)		1.4	Specific conductance		
Carbonate (CO ₂)	0	0	(micromhos at		1
Bicarbonate (HCO ₂)	16	23	25 C.)		116
Sulfate (SO ₄)	2. 1	13	Turbidity	5	
Chloride (Cl)	10	15	Temperature (F.)	58	66
Fluoride (F)		.0	Date of collection	May 7,	June 15,
Nitrate (NO ₂)	. 4	.2		1947	1951
Dissolved solids	57	73		1941	1991

a Analyzed by the Charlton Laboratories, Portland, Oreg.

COOS BAY--Continued
Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		р Н			Hardness as CaCO ₃ (ppm)			Temperature (°F)			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		14 24	8 16	6. 6 8. 4	6. 9 90	5. 2 8. 0	8 24	10 30	8 22	54 	68	3 6

CORVALLIS

(Population, 16, 207)

Ownership: Municipal; supplies also Philomath and about 800 consumers outside the city limits. Total population supplied, about 18,300.

Source: Rock Creek.

Treatment: Pressure filtration, chlorination and ammoniation.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: --

Finished-water storage: 7,000,000 gal.

A water treatment plant has been constructed to utilize water from the Willamette River although this source has not been used to date (June 1951). This plant has a rated capacity of 4,000,000 gpd. The treatment of the water will include coagulation, sedimentation, gravity filtration, and chlorination.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

-	Finished water ^a	Raw water ^b		Finished water	Raw water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 02	19 	Hardness as CaCO ₃ : Total Noncarbonate	37 0	20 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	5. 1 2. 2	4. 2 2. 4 5. 8	ColorpHSpecific conductance	5 7. 5	
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	51 1.8	0 28 4.9 3.0	(micromhos at 25 C.)	94 64	47. 9
Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 2	 . 8 c ₅₄	Date of collection	June 14, 1951	Nov. 27, 1950

^aRock Creek.

EUGENE

(Population, 35,879)

Ownership: Municipal; supplies also about 14,000 people outside the city limits. Total population supplied, approximately 50,000.

Source: McKenzie River. The intake is located near Hayden Bridge, 7 miles east of the city.

Treatment: Prechlorination, coagulation with alum and lime at times of high turbidity of water, and rapid sand filtration.

Rated capacity of treatment plant: 25,000,000 gpd.

Raw-water storage: None.

Finished water storage: 5 reservoirs, 21,100,000 gal; elevated tank, 100,000 gal.

^bWillamette River.

^CSum of determined constituents.

OREGON 331

EUGENE--Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	20 . 04 	Hardness as CaCO ₃ : Total Noncarbonate	17 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	3.6 2.0 3.6 1.6 0	pH Specific conductance (micromhos at	7 7. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	27 1.6 2.2 .0 .1	25 C.)	51 59 June 14, 1951

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water					7.4 7.4	7. 0 6. 6	17 17	18 18	16 16			

KLAMATH FALLS (Population, 15,875)

Ownership: Oregon Water Corporation (subsidiary of Boise Water Corporation, Boise, Idaho); supplies suburban Altamont District and also consumers outside the corporate limits of the city. Total population supplied, about 26,000. Source: 4 flowing wells (3, 6, 7, and 8), 145, 147, 370, and 850 ft deep.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 3,700,000 gal.

ANALYSIS

(Analysis, in parts per million, by the University of California, Berkeley, Calif.)

	Wells (composite sample)		Wells (composite sample)
Silica (SiO ₂)	24 . 15	Hardness as CaCO ₃ : Total	52
Manganese (Mn)	0	Noncarbonate	0
Calcium (Ca)	10 6.3	Colon	
Magnesium (Mg) Sodium (Na) Potassium (K)	30	PHSpecific conductance	8. 2
Carbonate (CO ₃) Bicarbonate (HCO ₃)	108	(micromhos at 25 C.)	212
Sulfate (SO ₄)	1.3 19	Turbidity Temperature (F.)	67
Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	.3	Date of collection	Mar. 22, 1949
Dissolved solids	141		

LA GRANDE

(Population, 8,635)

Ownership: Municipal; supplies also about 1,000 people outside the city limits.

Total population supplied, about 9,650.

Source: Beaver Creek and 3 tributaries (Cold Creek, West Fork, and Hidden Springs Creek). Emergency supply, 2 artesian (flowing) wells, 1,035 and 1,391 ft deep.

Treatment: Chlorination.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: 200,000,000 gal. Finished-water storage: 4,900,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

· · · · · · · · · · · · · · · · · · ·			7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Finished water a	Well 2		Finished water a	Well 2
Silica (SiO ₂)	34	73	Hardness as CaCO ₃ :		
Iron (Fe)	. 07		Total	21	24
Manganese (Mn)			Noncarbonate	1	0
Calcium (Ca)					
Magnesium (Mg)	1.7		Color	5	
Sodium (Na)	2.4		pH	6.8	
Potassium (K)	1.0		Specific conductance	1	
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	24	85	25 C.)	50	147
Sulfate (SO_4)		4	Turbidity		
Chloride (Cl)		1	Temperature (F.)	55	78
Fluoride (F)	.1	.5	Date of collection	June 19,	June 19,
Nitrate (NO ₃)		.3		1951	1951
Dissolved solids	68		l .		
Depth (feet)			***************************************		1,391
Diameter (inches)		1,391			
Date drilled		1926			
Percent of supply	• • • • • • • • • • • • • • • • • • • •		***************************************	<u> </u>	1920

a Beaver Creek.

MEDFORD (Population, 17,305)

Ownership: Municipal; supplies also Central Point, Eagle Point, and about 3,500 people outside the city limits. Total population supplied, about 23,100.

Source: Big Butte Spring.

Treatment: None.

Storage: 12,400,000 gal.

MEDFORD--Continued ANALYSIS

(Analysis, in parts per million, by Charlton Laboratories, Portland, Oreg.)

	Big Butte Springs		Big Butte Springs
Silica (SiO ₂)	35 .0	Hardness as CaCO ₃ : Total Noncarbonate	35 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃)	7.3 4.0 7.0 0 56	Color	6.9
Sulfate (SO ₄)	1.3 2.0 .0 .3 99	Turbidity Temperature (F.) Date of collection	42 Apr. 21, 1947

PENDLETON (Population 11,774)

Ownership: Municipal; supplies also about 200 people outside the city limits.

Total population supplied, about 12,000.

Source: Springs, 80 percent of supply; 2 wells 774 and 761 ft deep, 20 percent of

supply. Emergency supply from privately owned well. Treatment: Chlorination.

Raw-water storage: None.

Finished-water storage: 3,500,000 gal.

ANALYSIS

(Analysis, in parts per million, by Charlton Laboratories, Portland, Oreg.)

	Springs and wells ^a		Springs and wells ^a
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 2	Hardness as CaCO ₃ : Total Noncarbonate	95 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	25 8.0 26 0	Color	7. 2
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	146 15 12 . 2 b	25 C.) Turbidity Temperature (F.) Date of collection	 < 1 January 1949

a Composite sample.

b Sum of determined constituents.

PORTLAND (Population, 373,628)

Ownership: Municipal; supplies also about 107,000 people outside the city limits, including 60 water districts, water companies, and towns in areas adjacent to Portland. Total population supplied, about 480,000.

Source: Bull Run River impounded in Lake Ben Morrow Reservoir which extends $3\frac{1}{2}$ miles along the river, and Bull Run Lake, the source of the main branch of the river close to the summit of the Cascades.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: --

Raw-water storage: Storage reservoir on Bull Run River, 11,000,000,000 gal;

Bull Run Lake, 3,000,000,000 gal.

Finished-water storage: 6 reservoirs, 192,000,000 gal.

The water from the river is diverted 5 miles downstream from the storage dam through 3 steel conduits to distribution reservoirs on Mount Tabor, a distance of 24 miles. Four distribution reservoirs are located on Mount Tabor and two in Washington Park. Distribution is mainly by gravity.

ANALYSIS

(Analysis, in parts per million, by Charlton Laboratories, Portland, Oreg.)

	Finished water		Finished water
Silica (SiO ₂) Iron (Fe)	7. 2 . 2	Hardness as CaCO ₃ : Total	9
Manganese (Mn)	. 00 2. <u>3</u>	Noncarbonate	0
Magnesium (Mg) Sodium (Na)	. 7 2. 1	pH	15 7. 0
Potassium (K)	. 2	Specific conductance (micromhos at	
Bicarbonate (HCO ₃) Sulfate (SO ₄)	15 . 9	Turbidity	< 1
Chloride (Cl)	2.4	Temperature (F.) Date of collection	59 Sept. 19,
Nitrate (NO ₃) Dissolved solids	. 3 30		1947

ROSEBURG (Population, 8,390)

Ownership: Oregon Water Corporation (subsidiary of Boise Water Corporation, Boise, Idaho). Supplies also about 4,500 people outside the city limits. Total population supplied, about 12,900.

Source: North Umpqua River.

Treatment: Prechlorination, coagulation with alum and lime, sedimentation, and pressure filtration.

Rated capacity of treatment plant: 6,000,000 gpd.

kaw-water storage: None.

Finished-water storage: 3,100,000 gal.

ROSEBURG--Continued ANALYSIS

(Analysis, in parts per million, by University of California, Berkeley, Calif.)

	Finished water	,	Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	12 . 3 	Hardness as CaCO ₃ : Total Noncarbonate	43 , 16
Calcium (Ca)	15 1.3 7	Color pH Specific conductance (micromhos at	7.6
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	33 12 11 .1	25 C.)	97.3 53 Mar. 10, 1949
Dissolved solids	80		1040

SALEM

(Population, 43,140)

Ownership: Municipal; supplies also about 10,000 people outside the city limits. Total population supplied, about 53,100.

Source: Infiltration system from North Santiam River about 17 miles southeast of Salem. Auxiliary or emergency supply from wells. The wells furnished 19 percent of the total supply in 1950.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: --

Raw-water storage: None.

Finished-water storage: 11,500,000 gal. A reservoir under construction will provide 100,000,000 gal of additional storage.

The infiltration system is on Stayton Island in the North Santiam River above Stayton and below the Little North Fork. On Stayton Island 3 wells each 25 ft deep and capable of delivering 2 mgd are used when necessary to augment the infiltration supply. Water from the infiltration system is conducted to Salem by gravity flow through a 36-in. pipeline.

Four wells, which are in Salem and connected to the distribution system and are used during peak loads, contributed about 7 percent of the supply in 1951.

Contribution from all the wells probably exceeded 20 percent in 1951.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

(Analysis, in par	rts per million	i, by U. S. Geological Surve	;y)
	Finished water (tap sample)		Finished water (tap sample)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	.03	Hardness as CaCO ₃ : Total Noncarbonate	17 0
Calcium (Ca)	4.9 1.1 3.2 2.6	Color	5 7.3
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 31 1.7 1.0 .0	(micromhos at 25 C.)	54 64 June 14, 1951
Dissolved solids	45		1301

SPRINGFIELD (Population, 10,807)

Ownership: Mountain States Power Company.

Source: Willamette River; Auxiliary supply, 8 contiguous wells (1 to 8) ranging in depth from 28 to 30 ft. The yield of the wells is reported to be 1,000, 400, 1,250, 1,000, 150, 500, 900, and 1,000 gpm respectively. The well water is supplied directly to the transmission line which in turn feeds into the distribution system.

Treatment: Willamette River: rapid sand filtration and chlorination. During peak periods of consumption a pressure filter is operated in parallel with the 2 sand filters. The well water is chlorinated.

Rated capacity of treatment plant: 2, 500, 000 gpd.

Raw-water storage: None.

Finished-water storage: 1,550,000 gal.

The well system has been developed during 1950 and 1951. Should this source prove entirely satisfactory, it is expected to replace the Willamette River supply.

ANALYSES (Analyses, in parts per million)

	Raw water ^a	Well 3b		Raw water ^a	Well 3b	
Silica (SiO ₂)	17	11	Hardness as CaCO ₃ :			
Iron (Fe)		1.3	Total	36	37	
Manganese (Mn)			Noncarbonate	16	5	
Calcium (Ca)	11	11				
Magnesium (Mg)		2.3	Color			
Sodium (Na)	1.4	3.9	p H		7.1	
Potassium (K)			Specific conductance			
Carbonate (CO ₃)	0		(micromhos at			
Bicarbonate (HCO ₃)	25	39	25 C.)			
Sulfate (SO ₄)	15	2.5	Turbidity			
Chloride (Cl)	2.4	4.4	Temperature (F.)	l	53	
Fluoride (F)			Date of collection	Apr. 12,	Sept. 26,	
Nitrate (NO.)		9		1951	1950	
Dissolved solids	c ₆₁	c .9		1001	1900	
Depth (feet)						
Diameter (inches)						
Date drilled						
Percent of supply	••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	1950	
Percent of supply						

^aWillamette River. Analyzed by Elgin Softener Corporation, Elgin, Illinois.

b Analyzed by Oregon State College, Corvallis, Oreg.

^cSum of determined constituents.

ABERDEEN (Population, 21,051)

Ownership: Municipal; also supplies 175 people outside the city limits. Total population supplied, 21, 226.

Source: Elm River (impounded) supplemented by Maple and Willow Creeks (impounded) for main supply; 2 gravel pits, located northeast of treatment plant, for auxiliary supply.

Treatment: Softening with lime and soda ash, sedimentation, activated carbon, recarbonation, addition of polyphosphates (918-Y balls), coagulation with alum and sodium aluminate, secondary sedimentation, rapid sand filtration, ammoniation, and chlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: No. 1 dam, 60,000,000 gal; No. 2 dam, 170,000,000 gal; No. 4 dam, 76,000,000 gal; Elm Lake, 5,000,000 gal.

Finished-water storage: 3,700,000 gal.

The treatment plant is located 8 miles northeast of Aberdeen. River was at high stage when samples were collected. Fluoridation of public supply will be started soon.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

•	Elm River a	Elm River b		Elm River a	Elm River b
Silica (SiO ₂)	9.8	6.0	Hardness as CaCO ₃ :		
Iron (Fe)	. 03	. 06	Total	97	75
Manganese (Mn)	.00	. 00	Noncarbonate	17	41
Calcium (Ca)	25	28		 	
Magnesium (Mg)	8, 4	1.3	Color	33	5
Sodium (Na)	26	25	pH	7.1	8.8
Potassium (K)	7.0	6.8	Specific conductance	1	
Carbonate (CO ₂)	0	3	(micromhos at		
Bicarbonate (HCO ₃)	98	35	25 C.)	326	313
Sulfate (SO ₄)	56	80	Turbidity	10	0.4
Chloride (Cl)	14	16	Temperature (F.)	39	39
Fluoride (F)	. 1	.1	Date of collection	Apr. 11,	Apr. 11,
Nitrate (NO ₃)		.5	1	1951	1951
Dissolved solids	204	188		1	

	Alkalinity as CaCO ₃ (ppm)		Нq		Hardness as CaCO ₃ (ppm)		Turbidity					
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water		400	40		8.6	7.2		500	40		400	20
Finished water		75	20	9.5	10	9	70	110	30			

a Raw water.

b Finished water.

BROOKINGS (Population, 7,764)

Ownership: Municipal; also supplies a few people outside the city limits. Total population supplied, about 7,800.

Source: 3 wells (1, 2, and 3), each 60 ft deep, and each reported to yield 1,000 gpm.

Treatment: Aeration (for iron removal), sedimentation, and chlorination.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 4,000,000 gal.

The treatment plant is 2 miles north of Brookings.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Well 1 (raw water)	Finished water		Well 1 (raw water)	Finished water
Silica (SiO ₂)		25	Hardness as CaCO ₃ :		
Iron (Fe)		. 19	Total	656	672
Manganese (Mn)		. 93	Noncarbonate	370	383
Calcium (Ca)		173			
Magnesium (Mg)		58	Color	2	3
Sodium (Na)		18	pH	8.0	8.3
Potassium (K)		2.4	Specific conductance		
Carbonate (CO ₃)	0	10	(micromhos at		
Bicarbonate (HCO ₃)	349	333	25 C.)	1,160	1,160
Sulfate (SO ₄)	383	388	Turbidity	70	1
Chloride (Cl)	5.0	9.5	Temperature (F.)	48	48
Fluoride (F)		.3	Date of collection	Apr. 3,	Apr. 3,
Nitrate (NO ₃)	1.6	1.4		1951	1951
Dissolved solids	874	890			
Depth (feet)	60				
Diameter (inches)	18				
Date drilled	1930				
Percent of supply		1			

HURON (Population, 12,788)

Ownership: Municipal.

Source: James River for regular supply; 3 wells for auxiliary supply.

Treatment: Prechlorination, activated carbon, softening with lime and soda ash, coagulation and clarification with sodium aluminate, recarbonation, sedimentation, charcoal, and rapid sand filtration.

Rated capacity of treatment plant: 4,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 1,600,000 gal.

There is considerable variation in the composition of the water throughout the year. The treatment varies throughout the year.

HURON--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	James River a	James River ^b		James River a	James River b
Silica (SiO ₂)	9.0	8.2	Hardness as CaCO ₃ :		
Iron (Fe)	.02	. 05	Total	152	158
Manganese (Mn)		.69	Noncarbonate	39	88
Calcium (Ca)	37	38			
Magnesium (Mg)	15	15	Color	45	7
Sodium (Na)	39	46	pH	7.5	7.3
Potassium (K)	11	11	Specific conductance		
Carbonate (CO ₂)	0	0	(micromhos at		1
Bicarbonate (HCO.)	138	85	25 C.)	497	559
Sulfate (SO ₄)	97	149	Turbidity	15	0.3
Chloride (Cl)	21	30	Temperature (F.)	37	38
Fluoride (F)	. 1	.1	Date of collection	Apr. 10,	Apr. 10,
Nitrate (NO ₃)	5.6	1.4		1951	1951
Dissolved solids	340	384		<u> </u>	

a Raw water.

LEAD (Population, 6,422)

Ownership: Homestake Mining Co.; also supplies about 1,000 people in Deadwood and 500 in Central City and Terraville, and Pluma. Total population supplied, about 7,900.

Source: Springs in upper Spearfish Creek basin. Treatment: Chlorination and ammoniation.

Raw-water storage: None.

Finished-water storage: Reservoirs, 2,165,000 gal.

The water is pumped from the springs as needed to keep the reservoirs full.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)		. 00	Hardness as CaCO ₃ : Total Noncarbonate	250 1	255 2
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	.6 .3	60 26 .6 .4	Color	8. 0	8.2
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)		308 1.0 1.3	(micromhos at 25 C.)	444 0.4	446 0.9
Fluoride (F) Nitrate (NO ₂) Dissolved solids	. 1 1. 3 251	.1 1.8 255	Date of collection	May 15, 1951	May 15, 1951

b Finished water.

MADISON (Population, 5, 153)

Ownership: Municipal.

Source: 3 wells (East, South, and Plant) each about 30 ft deep. East well furnishes 90 percent of supply; South well, 5 percent; Plant well, 5 percent.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 400,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	East well (finished water)		East well (finished water)
Silica (SiO ₂)	22 . 49 . 79	Hardness as CaCO _s : Total Noncarbonate	662 413
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	161 63 64 11 0 304 448 70 .2 .3	Color pH	2 7.8 1,400 1 48 Apr. 3, 1951
Depth (feet)	27 23 1930 90		

MITCHELL (Population, 12, 123)

Ownership: Municipal; also supplies about 125 people outside the city limits, the air base, and the Hormel Packing Co. Total population supplied, about 12,250. Source: Firesteel Creek impounded in Lake Mitchell.

Treatment: Softening with lime-soda ash, coagulation with sodium aluminate, carbon, sedimentation, rapid sand filtration, recarbonation, and chlorination.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: 3,565,000,000 gal. Finished-water storage: 1,550,000 gal.

There is considerable variation in the composition of the raw water throughout the year.

MITCHELL -- Continued

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	5. 4 . 14 . 20	5. 1 . 14 . 03	Hardness as CaCO ₃ : Total Noncarbonate	392 214	126 20
Calcium (Ca)	82 46 66 14	31 12 144 14	Color	9 7. 6	9.7
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	217 323 24	37 54 311 24	25 C.) Turbidity Temperature (F.)	1,010	960 36
Fluoride (F) Nitrate (NO ₃) Dissolved solids	2.3	.3 2.0 631	Date of collection	Feb. 18, 1952	Feb. 18, 1952

Regular determinations at treatment plant

	Alkalinity as CaCO ₃ (ppm)		pН			Hardness as CaCO ₃ (ppm)		Temperature (°F)				
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water				9.5			240 85	300	190 		65 65	33 33

PIERRE (Population, 5,715)

Ownership: Municipal.

Source: 4 wells (1, 2, 3, and 4) 64, 63, 62, and 64 ft deep. The yield of the wells is reported to be 1,000, 700, 400, and 700 gpm. Wells 2 and 4 are used most

of the time for the supply. Treatment: Chlorination at wells.

Raw-water storage: None.

Finished-water storage: 2,750,000 gal. ANALYSIS

by II S Geological Survey)

(Analysis, in parts per million, by U. S. Geological Survey)						
	Finished water a		Finished water ^a			
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	23 . 04 1. 9	Hardness as CaCO ₈ : Total Noncarbonate	261 83			
Calcium (Ca)	68 22 87 4.2	Color pH Specific conductance (micromhos at	3 7.8			
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	217 232 24 . 8 1. 1 586	25 C.)	844 0.7 57 Apr. 26, 1951			

a Composite of wells 2 and 4.

RAPID CITY (Population, 25, 310)

Ownership: Municipal.

Source: Jackson Springs (82 percent of supply, 1950); 4 wells (1 to 4) 1,460, 902, 957, and 1,075 ft deep (18 percent of supply, 1950). The yield of the wells is

reported to be 380 (flowing), 240 (flowing), 669, and 690 (flowing) gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 3,000,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Jackson Springs a	Finished water ^b		Jackson Springs a	Finished water ^b
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 05		Hardness as CaCO ₃ : Total Noncarbonate	185 21	193 20
Calcium (Ca) Magnesium (Mg)	41	43 21	Color		0
Sodium (Na)	<i>V</i>	$\left\{\begin{array}{c} 5.2\\2.1\end{array}\right.$	pH Specific conductance (micromhos at	7.9	7.8
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄)	0 200 20	0 211 28	25 C.) Turbidity	369	376 0.7
Chloride (Cl) Fluoride (F)	. 2	3, 5 . 1	Temperature (F.) Date of collection	July 27,	May 23
Nitrate (NO ₃) Dissolved solids		1. 4 219		1949	1951

a Raw water.

SIOUX FALLS (Population, 52,696)

Ownership: Municipal; also supplies about 1,000 people outside the city limits. Total population supplied, about 53,700.

Source: 17 shallow wells 36 to 45 ft deep in the Big Sioux River bottoms. The yield of the wells ranges from 300 gpm (well 10) to 1,025 gpm (well 14), and averages 779 gal.

Treatment: Aeration, chlorination, sedimentation, rapid sand filtration, and stabilization with polyphosphate (Nalco).

Rated capacity of treatment plant: 8,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Elevated tanks, 1,905,000 gal; storage reservoirs, 5,200,000 gal. Total, 7,105,000 gal.

The quality of the water from the wells is affected by change in the stage of the Big Sioux River. There is considerable variation in the composition of the water throughout the year.

b Composite.

SIOUX FALLS--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water a	Finished water ^b		Raw water a	Finished water ^b
Silica (SiO ₂)	18	20	Hardness as CaCO ₃ :		
Iron (Fe)		.42	Total	320	484
Manganese (Mn)		1.6	Noncarbonate	129	227
Calcium (Ca)	85	122			
Magnesium (Mg)		44	Color	5	4
Sodium (Na)	7.6	17	рН	7.9	7.6
Potassium (K)	2.6	3.4	Specific conductance		
Carbonate (CO.)	0	0	(micromhos at	1	
Bicarbonate (HCO.)	233	314	25 C.)	624	921
Sulfate (SO ₄)	131	237.	Turbidity	1	2
Chloride (Cl)	5.5	14	Temperature (F.)	45	50
Fluoride (F)	. 3	.4	Date of collection	Mar.3,	Mar. 3,
Nitrate (NO ₃)	1.8	.6		1951	1951
Dissolved solids	430	646			` `

a Composite, all wells except well 24.

VERMILLION (Population, 5,337)

Ownership: Municipal.

Source: 2 wells (1 and 2) each 110 ft deep.

Treatment: Aeration, softening with lime and soda ash, coagulation with sodium aluminate, sedimentation, recarbonation, rapid sand filtration, and chlorination

Rated capacity of treatment plant: 1, 150, 000 gpd.

Raw-water storage: None.

Finished-water storage: Elevated tank, 500,000 gal.

ANALYSES

		F	on, by o. b. debrogree		
	Raw water ^a	Finished water a		Raw water a	Finished water a
Silica (SiO ₂) Iron (Fe)	34 2.6 .56	14 . 06 . 02	Hardness as CaCO ₃ : Total Noncarbonate	673 159	143 38
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₄)	80 12	46 6.8 147 13	Color	5 7.4	5 9. 1
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	627 335 8. 5 . 6	100 348 12 .5 .1	25 C.)	1,410 20 52 Feb. 20, 1951	927 5 53 Feb. 20, 1951

 $^{^{}a}$ Composite.

b Composite, all wells.

WATERTOWN (Population, 12,699)

Ownership: Municipal.

Source: Lake Kampeska, 75 percent of supply; 3 wells (2 to 4), each 28 ft deep, 25 percent of supply. The yield of the wells is reported to be 104, 104, and 139 gpm

Treatment: Lake water: coagulation with alum, sedimentation, rapid sand filtration, ammoniation, and chlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: Lake Kampeska. Finished-water storage: 2,400,000 gal.

The treatment plant is located near the lake. The finished lake water is mixed with the raw well water and the mixed water is delivered to the distribution system.

ANALYSIS

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	19	Hardness as CaCO ₃ :	
Iron (Fe)	. 02	Total	342
Manganese (Mn)	.00	Noncarbonate	124
Calcium (Ca)	81		
Magnesium (Mg)	34	Color	3
Sodium (Na)	53	рН	.7.8
Potassium (K)	6.8	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	266	25 C.)	901
Sulfate (SO ₄)	115	Turbidity	0.8
Chloride (Cl)	88	Temperature (F.)	43
Fluoride (F)	.1	Date of collection	Apr. 12,
Nitrate (NO ₃)	5.7		1951
Dissolved solids	586		

YANKTON (Population, 7,709)

Ownership: Municipal; also supplies about 3,000 people outside the city limits. Total population supplied, about 10,700.

Source: Missouri River.

Treatment: Coagulation with alum and sodium aluminate, softening with lime, sedimentation, rapid sand filtration, chlorination, and ammoniation.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: None.

Finished-water storage: Clear well and tank, 1,250,000 gal.

ANALYSES

		Finished water		Raw water	Finished water
Silica (SiO ₂)	15	12	Hardness as CaCO ₃ :		
Iron (Fe)	. 10	. 05	Total	245	113
Manganese (Mn)	. 03	. 01	Noncarbonate	78	80
Calcium (Ca)	65	26			
Magnesium (Mg)	20	12	Color	5	4
Sodium (Na)	57	61	pH	8.0	9.8
Potassium (K)		4.0	Specific conductance		
Carbonate (CO ₃)	0	17	(micromhos at	İ	
Bicarbonate (HCO ₃)	203	5.0	25 C.)	693	531
Sulfate (SO ₄)	187	194	Turbidity	45	1
Chloride (Cl)	11	12	Temperature (F.)	35	37
Fluoride (F)		.6	Date of collection	Feb. 20,	Feb. 20,
Nitrate (NO ₃)	1.6	1.6		1951	1951
Dissolved solids	494	368			

ABILENE, TEXAS (Population, 45,570)

Ownership: Municipal.

- Source: 3 lakes. Lake Abilene, approximately $19\frac{1}{2}$ miles southwest of Abilene on Elm Creek, about 25 percent of the supply; Lake Kirby, 4 miles south of Abilene on Cedar Creek, about 25 percent of the supply; Lake Fort Phantom Hill, 12 miles north of Abilene in Jones County, on Elm Creek, 50 percent of supply.
- Treatment: Lake Abilene and North Second Street (Fort Phantom Hill) plants: prechlorination, coagulation with alum, sedimentation, rapid sand filtration, and postchlorination. Lake Kirby plant: prechlorination, coagulation with alum, sedimentation, and postchlorination.
- Rated capacity of treatment plants: Lake Abilene, 4,000,000 gpd; Lake Kirby, 4,000,000 gpd; North Second Street, 8,000,000 gpd.
- Raw-water storage: 1 earthen reservoir, 20,000,000 gal; Lake capacities: Abilene, 3,250,000,000 gal; Kirby, 3,000,000,000 gal; Fort Phantom Hill, 25,000,000,000 gal.
- Finished-water storage: 2 elevated tanks, 500,000 gal each; 3 standpipes, 85,000, 250,000, and 250,000 gal; clear wells: Lake Abilene plant, 600,000 gal; Lake Kirby plant, 500,000 gal; and North Second Street plant, 2,000,000 gal.
- Except in emergencies Lake Fort Phantom Hill supply is used throughout the year.

 Lake Abilene and Lake Kirby are used primarily in the summer months when demands are high.
- Water from Lake Abilene flows by gravity to a 20,000,000 gal earthen tank, from whence it flows by gravity to the treatment plant, $7\frac{1}{2}$ miles south of Abilene on Buffalo Gap Road. The finished water is pumped to the city and into the distribution system and elevated storage.
- Water from Lake Kirby flows by gravity to the treatment plant, 1 mile south of Abilene. The finished water is pumped into the distribution system and elevated storage.
- Water from Lake Fort Phantom Hill is pumped to the treatment plant on North Second Street and Cottonwood Street. The finished water is pumped into the distribution system and elevated storage.

ANALYSES

	L. Abilene (raw water)	L. Kirby (raw water)	Lake Fort Phantom Hill ^a	Lake Fort Phantom Hill ^a	Finished water (city tap)
Silica (SiO ₂)	9. 6	5.5	6.0	1.2	0.8
Iron (Fe)				. 05	. 09
Manganese (Mn)	1			.00	.00
Calcium (Ca)	51	44	46	40	40
Magnesium (Mg)	15	12	19	23	23
Sodium (Na)	9.3	13	52	57	61
Potassium (K)	5.1	4.9	8.5	8.0	6.8
Carbonate (CO ₃)	9	12	12	0	0
Bicarbonate (HCO ₃)	192	178	198	236	234
Sulfate (SO ₄)	21	11	52	40	46
Chloride (Cl)	15	9.0	56	65	66
Fluoride (F)	. 2	1.0	. 2	. 3	. 3
Nitrate (NO _s)	.0	. 5	. 2	. 2	. 0
Dissolved solids	234	209	360	362	361
Hardness as CaCO ₃ :					
Total	189	159	193	194	194
Noncarbonate	17	0	10	1	3

a Raw water.

ABILENE, Analyses -- Continued

	L. Abilene (raw water)	L. Kirby (raw water)	Lake Fort Phantom Hill a	Lake Fort Phantom Hill ^a	Finished water (city tap)
ColorpHSpecific conductance		· 		15 7.8	10 7. 3
(micromhos at 25 C.)	407	390	62 2	642	640
Turbidity					
Temperature (F.)					
Date of collection	Apr. 18, 1946	Apr. 18, 1946	Apr. 19, 1946	Jan. 18, 1952	Jan. 18, 1952

Regular determinations at treatment plant, 1951 b

	as	kalini CaC((ppm)	O _s	рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		230 220	165 160	8. 2	8. 4	7.7				1 1		

a Raw water.

ALICE (Population, 16,449)

Ownership: Municipal; supplies also about 300 people outside the city limits. Total population supplied, about 16,750.

Source: 7 wells (1 to 5, 11, and 12), 2,068 (plugged 992 ft), 622, 647, 550, 900, 864, and 889 ft deep. The yield of the wells is reported to range from 110 to 430 gpm. The wells are pumped individually.

Treatment: Periodic chlorination (for example, during floods in the area). Each well is equipped with a chlorinating unit.

ANALYSES

Raw-water storage: None.

Finished-water storage: 2,500,000 gal.

(Analyses, in p	arts per m	illion, by U	. S. Geolog	gical Surve	y)
	Well 1	Well 2	Well 3	Well 4	Well 5
	(raw water)	(raw water)	(raw water)	(raw water)	(raw water)
Silica (SiO ₂)	29	22	18	25	18
Iron (Fe)	. 02	. 03	. 05	. 05	. 04
Manganese (Mn)					
Calcium (Ca)	23	20	43	42	30
Magnesium (Mg)	8.8	8.1	23	22	17
Sodium (Na)	333	290	398	313	317
Potassium (K)	11	9. 9	12	11	10
Carbonate (CO _s)	0	0	0	0	0
Bicarbonate (HCO ₃)	345	353	315	362	358
Sulfate (SO ₄)	196	117	165	115	128
Chloride (Cl)	237	214	448	325	289
Fluoride (F)	1.0	. 9	. 9	2. 1	1.2
Nitrate (NO ₃)	11	12	22	12	12
Dissolved solids	1,030	876	1,290	1,090	1,020
Hardness as CaCO ₃ :			ĺ		
Total	94	84	202	196	145
Noncarbonate	0	0	0	0	0

b Average of all three plants.

ALICE, Analyses -- Continued

ADICE, Analyses - Continued										
	Well 1 (raw water)	Well 2 (raw water)	Well 3 (raw water)	Well 4 (raw water)	Well 5 (raw water)					
Color	7. 2 1,880		7. 4 2, 480		7. 8 1, 740					
Temperature (F.) Date of collection	86 Mar. 5, 1945		82 Mar. 5, 1945		Sept. 27					
Depth (feet)	1,076 16-8 1928	5	647 10 1940 	10	900 16-8 1945 					

AMARILLO (Population, 74, 246)

Ownership: Municipal.

Source: 47 wells in several well fields southwest of the city of Amarillo in the northern section of Randall County. Palo Duro Field: 10 wells (1 to 10), each 200 ft deep, with a reported average yield of 657 gpm; Greely: 7 wells (1 to 7), 264 to 313 ft deep, with a reported average yield of 951 gpm; Bush: 6 wells (one unnumbered, and 1 to 5), 239 to 305 ft deep, with a reported average yield of 955 gpm; McDonald: 6 wells (1 to 6), 270 to 336 ft deep, and each reported to yield 750 gpm; Bassett: 2 wells (1 and 2), 265 and 280 ft deep, and each reported to yield 750 gpm; Brinkman: 1 well (1), 277 ft deep, and reported to yield 700 gpm; West-Tex: 6 wells (1 to 6), 260 to 300 ft deep, with a reported average yield of about 1,200 gpm; Sec. 98: 1 well (3), 273 ft deep, and reported to yield 980 gpm. (Data for the remaining 8 wells, not reported).

Treatment: Chlorination.

Rated capacity of transmission plant: 23,300,000 gpd.

Raw-water storage: None.

Finished-water storage: 3 ground storage reservoirs, 5,000,000 gal, each; 3 elevated tanks, 1,000,000 gal, each; 1 elevated tank, 500,000 gal.

The wells are pumped individually to the transmission plant. The water is chlorinated at the transmission plant prior to going into the distribution system. The analyses selected are reasonably representative of the water furnished by the wells.

AMARIL LO--Continued ANALYSES

		Duro ll 1	Palo D Well		Greeley Well 1	,	Bush Well 4	Bush Well 5	
Silica (SiO ₂)		61	65		80	\dashv	67	66	
Iron (Fe)		. 02	١.	04	.0)	.0	.07	
Manganese (Mn)									
Calcium (Ca)	. 58		32	1		58		36	
Magnesium (Mg)		62	39		43		26	41	
Sodium (Na) Potassium (K)	1	36 4.2	37	0	25 8.0	. 1	24 6.0	14 3.8	
Carbonate (CO ₂)		0	0	. 0	0.0	'	0.0	0	
Bicarbonate (HCO ₃)	j 4.	40	320		328	ı	288	294	
Sulfate (SO ₄)		84	35		34		50	29	
Chloride (Cl)		16	12		7. 0)	9.0	10	
Fluoride (F)		3.6		. 2	3.2	ı	2.4	3.0	
Nitrate (NO ₃)	_	3.8	ł	. 2	2. 8	3	3.5	2.5	
Dissolved solids	5	30	386		372		382	390	
Hardness as CaCO ₃ :		00	040		957		050	258	
Total Noncarbonate	_	00 39	240 0		257 0		252 16	18	
- Noncar bonate		0.0			0	\dashv		10	
Color						[
рН	ĺ	7.6		7.8	7.	6	7.4	7. 6	
Specific conductance	•								
(micromhos at 25 C.)		79 9		586	58	34 534		561	
Turbidity									
Temperature (F.)					7 22		 	Da - 11	
Date of collection		. 11, 947	Dec. 11, 1947		June 23, 1948		June 23, 1948	Dec. 11, 1947	
	1947		101	•	1010		1010		
						一		T	
		M€De Wel	onald ll 1		assett 'ell 2		rinkman Well 1	West-Tex Well 1	
Silica (SiO ₂)		We							
Iron (Fe)	•••••	We	11 1		ell 2		Well 1	Well 1	
Iron (Fe)	•••••	Wel	11 1 36 .06		7ell 2 56 .06		Well 1 62 .0	Well 1 65 .08	
Iron (Fe) Manganese (Mn) Calcium (Ca)	•••••	Wel	11 1 36 .06 		7ell 2 56 . 06 54		Well 1 62 .0 48	Well 1 65 .08 39	
Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg)	•••••	Wel	. 06 35		56 .06 54 33		Well 1 62 .0 48 27	Well 1 65 .08 39 33	
Iron (Fe)	•••••	Wel	. 06 . 06 35 35		7ell 2 56 .06 54 33 7.1		Well 1 62 .0 48 27 16	Well 1 65 .08 39 33 26	
Iron (Fe)	•••••	Wel	. 06 35		56 .06 54 33		Well 1 62 .0 48 27	Well 1 65 .08 39 33	
Iron (Fe)	•••••	Wel	11 1 36 .06 35 35 28 3.8 0		7ell 2 56 .06 54 33 7.1 3.4		Well 1 62 .0 48 27 16 9.2	Well 1 65 .08 39 33 26 4.8	
Iron (Fe)		Wel	11 1 66 .06 35 .85 .88 .0 .088 .26		56 . 06 54 33 7.1 3.4 0 300 23		Well 1 62 . 0 48 27 16 9.2 0 294 25	Well 1 65 .08 39 33 26 4.8 0 296 37	
Iron (Fe)		Wel	11 1 36 .06 35 .35 .28 .3 .8 .0 .08 .26 .10		7 56 . 06 54 . 33 . 7. 1 . 3. 4 . 0 . 300 . 23 . 8. 0		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0	
Iron (Fe)		Wel	11 1 36 . 06 35 . 38 . 3 . 8 . 0 08 . 26 . 10 . 3 . 2		7 56 . 06		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4	
Iron (Fe)		299 2	11 1 36 .06 35 28 3.8 0 08 26 10 3.2 3.8		7 56 . 06		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 2.8	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4 1.8	
Iron (Fe)		Wel	11 1 36 .06 35 28 3.8 0 08 26 10 3.2 3.8		7 56 . 06		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4	
Iron (Fe)		29 23 35	11 1 66 .06 85 .88 .8 .8 .0 .08 .8 .8 .0 .0 .08 .00 .00		7 1 3.4 0 300 23 8.0 2.2 3.8 341		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 2.8 341	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4 1.8 351	
Iron (Fe)		299 2	11 1 66 .06 85 .88 .8 .8 .0 .08 .8 .8 .0 .0 .08 .00 .00		7 56 . 06		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 2.8	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4 1.8	
Iron (Fe)		29 23 35	11 1 .06 .06 .35 .35 .38 .0 .08 .08 .03 .3. 8 .00 .3. 2 .3. 8 .00 .3. 2 .3. 8 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0		7 56 . 06 54 . 33 . 7. 1 . 3. 4 . 0 . 300 . 23 . 8. 0 . 2. 2 . 3. 8 . 341 . 270		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 341 231	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4 1.8 351	
Iron (Fe)		29 23 35	11 1 66 .06		7 56 . 06		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 2.8 341 231 0	Well 1 65 .08 .39 .33 .26 .4.8 .0 .296 .37 .7.0 .2.4 .1.8 .351 .233 .0	
Iron (Fe)		29 23 35	11 1 .06 .06 .35 .35 .38 .0 .08 .08 .03 .26 .10 .32 .38 .60		7 56 . 06 54 . 33 . 7. 1 . 3. 4 . 0 . 300 . 23 . 8. 0 . 2. 2 . 3. 8 . 341 . 270		Well 1 62 . 0 48 27 16 9. 2 0 294 25 4. 1 2. 8 2. 8 341 231 0	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4 1.8 351	
Iron (Fe)		29 23 35	11 1 66 .06 85 .88 .8 .8 .0 .98 .86 .10 .3 .2 .3 .8 .50 .82 .0		7 1 3.4 0 300 23 8.0 2.2 3.8 341 270 24		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 2.8 341 231 0 7.4	Well 1 65 .08 .39 .33 .26 .4.8 .0 .296 .37 .7.0 .2.4 .1.8 .351 .233 .07.8	
Iron (Fe)		29 23 35	11 1 66 .06		7 56 . 06		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 2.8 341 231 0	Well 1 65 .08 .39 .33 .26 .4.8 .0 .296 .37 .7.0 .2.4 .1.8 .351 .233 .0	
Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids Hardness as CaCO ₃ : Total Noncarbonate Color pH Specific conductance (micromhos at 25 C.)		29 23 35	11 1 36 .06		7 1 3 4 0 300 23 8 0 2 2 3 8 341 270 24 7.6 529		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 341 231 0 7.4 511	Well 1 65 .08 .39 .33 .26 .4.8 .0 .296 .37 .7.0 .2.4 .1.8 .351 .233 .07.8	
Iron (Fe)		Wel	11 1 36 .06	W	7 1 3 4 0 300 23 8 0 2 2 3 8 341 270 24 7.6 529		Well 1 62 .0 48 27 16 9.2 0 294 25 4.1 2.8 341 231 0 7.4 511	Well 1 65 .08 39 33 26 4.8 0 296 37 7.0 2.4 1.8 351 233 0 7.8	

AUSTIN (Population, 132, 459)

Ownership: Municipal; the city furnishes about 18,000 people outside the city

limits. Total population supplied, about 150, 500.

Source: Colorado River.

Treatment: Coagulation with iron salts (ferrous sulfate), softening with lime, ammoniation, chlorination, sedimentation, and rapid sand filtration.

Rated capacity of treatment plant: 32,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 1 ground reservoir, 10,000,000 gal; 1 ungerground reservoir, 2,000,000 gal; clear well, 4,000,000 gal.

The water is pumped from the river to the treatment plant, located nearby within the city limits. The finished water is pumped to the distribution system and storage.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(initition, by C.		
•	Colorado River (raw water) ^a	Raw water	Finished water
Silica (SiO ₂)	11	12	5, 4
Iron (Fe)		. 03	.00
Manganese (Mn)		.00	.00
Calcium (Ca) ······		40	11
Magnesium (Mg)	14	16	14
Sodium (Na)	h	∫ 44	47
Potassium (K)	34	3.6	.8
Carbonate (CO ₃)		0	20
Bicarbonate (HCO ₃)		154	17
Sulfate (SO ₄)		39	41
Chloride (Cl)		67	68
Fluoride (F)		.3	.3
Nitrate (NO ₃)	1.4	.8	.2
Dissolved solids		297	220
Hardness as CaCO ₃ :	270	291	220
Total	160	166	85
Noncarbonate		40	38
	21	40	30
Color		أ م	5
pH		8.0	9.7
Specific conductance		0.0	0. 1
(micromhos at 25 C.)	464	529	412
Turbidity		529 0	712
Temperature (F.)		U	68
Date of collection		Sept. 4-30, 1951	
Date of Collection		F-F 2 30, 1991	160. 20, 1002

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)				pН		Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Av	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		153 51		8.0 9.9	8.4 10.3	7.6 9.7	161 71	168 78	156 68	14 2	900 2	10 2

^a Weighted average of analyses of 10-day composites of daily samples for the water year October 1949 to September 1950.

BAYTOWN (Population, 22, 983)

Ownership: Municipal; also supplies the town of Cedar Bayou. Total population supplied, about 24,500.

Source: 6 wells (Baytown 1 to 6), 410, 448, 485, (depth not reported), 563, and 468 ft deep. The yield of the wells is reported to be 900, 1,000, 650, 750, 585, and 200 gpm. Emergency supplies can be obtained from the supply of the Humble Oil and Refining Co.

Treatment: Chlorination at the wells.

Raw-water storage: --

Finished-water: 880,000 gal.

The wells are pumped individually into ground storage tanks, from which the water is pumped into the distribution system. Overhead storage tanks for pressure equalization are "floated" on the distribution system.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Baytown Well 1 (raw water)	·	Baytown Well 1 (raw water)
Silica (SiO ₂)	26 . 29 . 00	Hardness as CaCO ₃ : Total Noncarbonate	40 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	10 3.5 271 .8 0 461 .2 174 1.2 .0	Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	10 7.6 1,270 Nov. 27, 1951
Depth (feet)			410 13-6 5/8 1942

BEAUMONT (Population, §4,014)

Ownership: Municipal.

Source: Neches River. The water is diverted by open canal from 2 intakes. The lower intake (Bunn's Bluff) is 8 miles upstream from the turning basin in Beaumont; the upper intake (Weiss' Bluff) is 21 miles upstream. The upper intake is only used when salt water from Sabine Lake moves upstream to the Bunn's Bluff intake.

Treatment: Aeration, coagulation with alum, chlorination, sedimentation, rapid sand filtration, and final adjustment of pH with lime.

Rated capacity of treatment plant: 20,000,000 gpd.

Raw-water storage: --

Finished-water storage: Ground reservoir and elevated tanks, 7,500,000 gal.

There is some variation in the composition of the water throughout the year. The analyses of the raw water at Evadale about 20 miles upstream from Beaumont are essentially representative of the raw water diverted for the supply.

BEAUMONT -- Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Neches River	Neches River	Finished
	at Evadale a	at Evadale	water
	(raw water)	(raw water) ^b	
Silica (SiO ₂)	16	27	17
Iron (Fe)		. 57	. 06
Manganese (Mn)			.00
Calcium (Ca) ······		12	21
Magnesium (Mg)		4.6	3.3
Sodium (Na)	h	∫ 39	41
Potassium (K)		.4	1.6
Carbonate (CO ₃)	ا ٥	l 0	0
Bicarbonate (HCO ₃)		66	46
Sulfate (SO ₄)	12	8.8	35
Chloride (Cl)		50	60
Fluoride (F)	.0	.3	.1
Nitrate (NO ₃)	. 9	8.	. 2
Dissolved solids	96	174	212
Hardness as CaCO ₃ :			
Total	31	49	66
Noncarbonate	15	0	28
Color		60	10
pH		7.0	7. 0
Specific conductance			
(micromhos at 25 C.)	115	295	360
Turbidity			
Temperature (F.)			
Date of collection	1950 water year	Sept. 1-13, 15-	Nov. 27, 1951
		20, 1951	•

Regular determinations at treatment plant, 1950

	as	kalini S CaC (ppm)	O ₃	рН		Hardness as CaCO ₃ (ppm)			Т	Turbidity		
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water	25 30	60 60	7 20	6.7 8.4		6.3 8.3	40 60	60 80	20 55	35 .35	350 1	14 0

a Weighted average of analyses of 10-day composites of daily samples for the water year October 1949 to September 1950.

Composite of daily samples Sept. 1-13, 15-20, 1951.

BELLAIRE (Population, 10, 173)

Ownership: Municipal.

Source: 4 wells, ranging in depths from 1, 102 to 1,649 ft in the Lissie-Willis

water-bearing formation.

Treatment: Chlorination at the wells. Rated capacity of treatment plant: --

Raw-water storage: --

Finished-water storage: 750,000 gal.

The wells are pumped individually into ground storage tanks. From the storage tanks the water is pumped into the distribution system.

BELLAIRE -- Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

/times/pro/ in par	to per minior	i, by U. D. Geological bulve	· y)
	Well 4 (raw water)		Well 4 (raw water)
Silica (SiO ₂) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	18 .02 .00 9.2 2.7 114 .8 0 274 9.8 36 .6 .2	Hardness as CaCO ₃ : Total Noncarbonate Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date of collection	25 0 8.0 535 Nov. 20, 1951
Diameter (inches)	******************		1,634 20-10 ³ / ₄ 1950

BIG SPRING (Population, 17, 286)

Ownership: Municipal; supplies also about 3,000 persons outside the city limits, and the Big Spring Air Force Base. Total population supplied, in excess of 20,300.

Source: 26 wells in 4 well fields, about 50 percent of supply; Powell I ake, capacity 1,461 acre-ft, on Powell Branch Creek 12 miles southwest of Big Spring, about 50 percent of the supply. Well fields: City Park: 2 wells, 273 and 283 ft deep, 2.8 miles south of the City Hall; O'Barr: 7 wells, 125 to 255 ft deep, 22 miles south of the city in Glasscock County; Section 17: 10 wells, 121 to 260 ft deep, about 3 miles southwest of the City Hall; Section 33: 7 wells, 223 to 316 ft deep, about 5.7 miles southeast of the City Hall. Auxiliary or emergency supply, Moss Lake on Moss Ranch Creek.

Treatment: Surface water: coagulation with alum, sedimentation, rapid sand filtration, and chlorination. Wells: chlorination.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 4 reservoirs, three, 1,000,000 gal each, and one, 200,000 gal; 1 elevated tank, 200,000 gal.

The water is pumped from Powell I ake to the treatment plant in Big Spring. The finished water from the treatment plant is pumped into one of the reservoirs. The wells pump as a unit in each well field to a chlorinator station at City Park, where the water is chlorinated. The water from the chlorinator station and the treatment plant is pumped into the reservoir containing the smallest amount of water at the time. The water is pumped from the reservoirs into the distribution system and elevated tank.

BIG SPRING--Continued ANALYSES

(Analyses, in parts per million, by 0. S. Geological Survey)									
	City Park	O'Barr	O'Barr	Section	Section				
	Field	Field	Field	17	33				
	well 4	well 1	well 4	well 9	well 54				
Silica (SiO ₂)	15	15	23	17	16				
Iron (Fe)	.04	.04	.08	.04	.06				
Manganese (Mn)			.00						
Calcium (Ca)	100	94	70	94	88				
Magnesium (Mg)	10	20	13	4.6	8.3				
Sodium (Na)	28	11	33	6.2	19				
Potassium (K)	5.8	4.8	.8	4.0	4.7				
Carbonate (CO ₃)	0	0	0	0	0				
Bicarbonate (HCO ₃)	294	318	251	26 8	244				
Sulfate (SO ₄)	46	29	30	19	35				
Chloride (C1)	44	36	38	20	40				
Fluoride (F)	1.0	.6	1.0	. 0	1.2				
Nitrate (NO ₃)	5.7	5.0	6.6	5.3	5.8				
Dissolved solids	409	369	35 8	302	326				
Hardness as CaCO ₃ :									
Total	290	316	22 8	254	254				
Noncarbonate	50	56	22	34	54				
Color			0						
pH	7.2	7, 2	7.4	7.1	7.2				
Specific conductance				:					
(micromhos at 25 C.)	690	644	604	506	55 8				
Turbidity									
Temperature (F.)									
Date of collection	Aug. 21,	Aug. 22,	Apr. 29,	Aug. 22,	Aug. 22,				
	1947	1947	1952	1947	1947				
Depth (feet)	283	. 129	255	121	303				
Diameter (inches)	12	123	12	6	10-8				
Date drilled	1926	1943	1944	1926	1984				
Percent of supply	1920	1943	. 1344	1920	1907				
referred supply									

	Moss Lake (raw water)	Powell Lake (raw water)	Finished water ^a
Silica (SiO ₂)		7.1	19
Iron (Fe)		. 10	.0
Manganese (Mn)			
Calcium (Ca) ······	30	32	78
Magnesium (Mg)	2.1	4.1	11
Sodium (Na)	3.5	\int 12	30
Potassium (K)	3. 5	3.5	.4
Carbonate (CO ₂)	0	8	0
Bicarbonate (HCO ₂)	105	116	275
Sulfate (SO ₄)	2	3.8	31
Chloride (Cl)	2.0	10	30
Fluoride (F)		. 2	.6
Nitrate (NOs)		.0	5. 0
Dissolved solids		130	346
Hardness as CaCO ₄ :			
Total	84	97	240
Noncarbonate	0	0	14

a Reservoir, composite sample.

BIG SPRING, Analyses -- Continued

	Moss Lake (raw water)	Powell Lake (raw water)	Finished water ^a
Color			0
pH	•		7.5
Specific conductance			
(micromhos at 25 C.)		225	587
Turbidity			
Temperature (F.)			
Date of collection	Aug. 9, 1945	Aug. 21, 1947	Mar. 29, 1952

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO ₃ (ppm)			рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		124 120			8. 5 8. 1	7.6 7.7				67 	300	25

a Reservoir, composite sample.

BORGER (Population 18,059)

Ownership: Phillips Petroleum Co.

Source: 8 wells (1 to 8), 410, 384, 371, 376, 495, 535, 403, and 459 ft deep, at the Plains Water Station in Carson County 13 miles southwest of Borger. The yield of the wells is reported to range from 700 to 800 gpm.

Treatment: None. Storage: 10,000 gal.

The Phillips Petroleum Co. pumps the water from the well field through two 12-in. lines to the city limits from which point it is distributed by the city.

ANALYSIS

	Wells (composite)		Wells (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	28 . 04 	Hardness as CaCO ₃ : Total Noncarbonate	197 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	46 20 24 7.6	Color pH Specific conductance	8.0
Carbonate (CO_3)	22 204 24 18	(micromhos at 25 C.) Turbidity Temperature (F.)	444
Fluoride (F) Nitrate (NO ₃) Dissolved solids	.4 * 3.5 294 .	Date of collection	Nov. 17, 1947

BROWNSVILLE (Population, 36,066)

Ownership: Municipal; supplies also about 400 people outside the city limits.

Total population supplied, about 36,500. City also supplies Port of Brownsville, Carthage Hydrocal Plant, and International Airport outside the city limits.

Source: Rio Grande.

Treatment: (Both plants) Plain sedimentation, aeration (spray), prechlorination, coagulation with alum and lime, sedimentation, activated carbon at times for odor and taste control, rapid sand filtration, and postchlorination. Use of copper sulfate at times in reservoir.

Rated capacity of treatment plants: Plant 1: 5,000,000 gpd; plant 2: 4,000,000 gpd. Raw-water storage: Reservoir, 180 acres, average depth, 8 ft.

Finished-water storage: 3, 150, 000 gal.

The raw water source is the same for both treatment plants. The water for plant 2 flows through a concrete lined canal to the plant. There is considerable variation in the composition of the raw water throughout the year.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (Plant 2)		Finished water (Plant 2)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	13 . 09 . 00	Hardness as CaCO ₃ : Total Noncarbonate	266
Calcium (Ca) Magnesium (Mg)	72 21	Color	153 10
Sodium (Na) Potassium (K) Carbonate (CO ₃)	126	pH Specific conductance (micromhos at	7.4
Bicarbonate (HCO_3) Sulfate (SO_4)	138 184	25 C.) Turbidity	·1, 100
Chloride (Cl)	165 . 6 2. 0	Temperature (F.) Date of collection	Oct. 22, 1951
Dissolved solids	652		1901

Regular determinations at treatment plant, 1950

	as	kalini s CaC (ppm)		рН			as	rdnes CaC(ppm)		Turbidity		
	Av	Max	Min	A٧	Max	Min	Av	Max	Min'	Αv	Max	Min
Raw water a Finished water a.		220 212	90 82	8. 1 7. 9	8.3 7.9	7. 9 7. 7	279 282	480 410	130 140	126 0	450 0	40 0
Raw water b Finished water b.				7.9 7.7	8. 0 7. 8			470 450	180 150	66 0	140 0	25 0

aPlant 1.

bPlant 2.

BROWNWOOD (Population, 20, 181)

Ownership: Municipal and Brown County Water Improvement District; supplies also about 5,000 persons outside the city limits. Total population supplied, about 25,200.

Source: Pecan Bayou and Jim Ned Creek impounded in Lake Brownwood (capacity 137, 300 acre-ft to emergency spillway), 9 miles north of Brownwood.

Treatment: Coagulation with alum, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 8,000,000 gpd.

Raw-water storage: 2 reservoirs, approximately 9,800,000 and 6,500,000 gal. Finished-water storage: 4 ground storage tanks: two 1,000,000 gal each, 500,000, and 250,000 gal.

The water from Lake Brownwood flows approximately 7 miles through an open canal to the larger of the storage reservoirs; from this reservoir to the smaller one, and then to the treatment plant. The finished water is pumped to two 1,000,000 gal ground storage tanks. From this point the city is responsible for the distribution of the water. It flows by gravity from the two 1,000,000 gal tanks into the distribution system and the two smaller ground storage tanks.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

·	Raw water	Raw water	Finished water
Silica (SiO ₂)			3.0
Iron (Fe)	.0		. 05
Manganese (Mn)			.00
Calcium (Ca)	38		40
Magnesium (Mg)	7.0		5.5
Sodium (Na)	20		11
Potassium (K)	11		1. 2
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	132	127	130
Sulfate (SO ₄)	17		12
Chloride (Cl)	37	21	23
Fluoride (F)	. 1		. 1
Nitrate (NO ₃)	. 2		. 2
Dissolved solids	195	`	170
Hardness as CaCO ₃ :			
Total	124	113	122
Noncarbonate	15	9	16
Color		10	5
pH	8.0	8.2	7.8
Specific conductance	5.0	""	1.0
(micromhos at 25 C.)	358	293	302
Turbidity			
Temperature (F.)		70	
Date of collection	Sept. 21, 1948	May 2, 1952	Jan. 17, 1952

Regular determinations at treatment plant, 1951

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		110 108		8.1 7.5	8.4 7.7	8.0 7.2	134 131	150 146	120 120	25 . 3	170 2	12 . 2

BRYAN (Population, 18, 102)

Ownership: Municipal; also supplies about 150 people outside the city limits. Total population supplied, about 18, 250.

Source: 8 wells (1 to 8), about $3\frac{1}{2}$ miles northwest of the city limits. Auxiliary or emergency supply can be obtained from A & M College, College Station, Tex. The wells are 557, 523, 498, 677, 584, 499, 536, and 554 ft deep, respectively, and are reported to yield 261, 315, 346, 424, 582, 510, 402, and 402 gpm. Treatment: Aeration (air diffusion) and chlorination.

Rated capacity of pumping plant: 3,600,000 gpd.

Raw-water storage: Underground reservoir, 500,000 gal.

Finished-water storage: Underground reservoir, 3,000,000 gal; elevated tank, 400,000 gal.

The wells are pumped individually into an underground reservoir at the well field, the water being aerated as it enters the reservoir, chlorinated as it leaves the reservoir to be pumped to a larger underground reservoir in the city where it is pumped into the distribution system and elevated tanks.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Well 3 Finished Well 4 Well 5 (raw water (raw (raw (city tap) water) water) water) Silica (SiO₂) 16 15 19 17 . 05 . 12 Iron (Fe)..... . 25 . 10 .00 Manganese (Mn) 1.7 . 4 Calcium (Ca) 1.5 2. 1 . 2 Magnesium (Mg) 2 . 5 . 3 Sodium (Na)..... 71 71 192 69 Potassium (K) 8 22 Carbonate (CO₃)..... 0 11 0 Bicarbonate (HCO₃)..... 163 392 137 152 Sulfate (SO₄) 1.5 2.4 1.6 . 1 Chloride (Cl)..... 16 45 16 22 Fluoride (F) 2 . 3 . 0 .0 Nitrate (NO₃) 0 . 0 . 2 Dissolved solids 188 474 184 181 Hardness as CaCO₃: Total 5 7 5 2 Noncarbonate 0 0 0. 0 Color..... 20 8.2 8.2 8. £ 7.7 Specific conductance (micromhos at 25 C.) 298 280 Turbidity Temperature (F.) 79 Depth (feet) 498 677 584 Diameter (inches) 16-8 5/8 $16-8 \ 5/8$ 16-8 5/8 1943 Date drilled 1939 1939 Percent of supply

CLEBÜRNE (Population, 17,600)

Ownership: Municipal; supplies also about 800 persons outside the city limits. Total population supplied, about 18,400.

Source: 7 wells (1, and 3 to 8), 1,100, 950, 935, 1,274, 1,206, 1,250, and 1,258 ft deep. Wells 1, 3, 4, and 6 are at pumping plant, about 200 yd from the City Hall; well 5, on North Cranberry St; well 7, on West Henderson St; and well 8, on Huron and Ramsey Sts.

Treatment: Filtration through sand traps and chlorination.

Raw-water storage: None.

Finished-water storage: 1 underground reservoir, 1,250,000 gal; 2 elevated tanks, 500,000 and 110,000 gal.

The wells pump into sand traps; the water nows by gravity through the sand traps to clear wells where it is chlorinated, and from which it is pumped into the distribution system, elevated tanks, and underground reservoir. Wells 5, 7, and 8 operate individually; wells 1, 3, 4, and 6 operate as a unit, the water being pumped to a common sand trap and chlorinator.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Wells Well 4 Well 3 Well 6 (raw water)^a (raw water) (raw water) (raw water) Silica (SiO₂) 17 14 14 13 . 01 .02 Iron (Fe)..... .01 .0 .00 Manganese (Mn)00 2.2 2.3 1.8 1.8 Calcium (Ca) Magnesium (Mg) 1.1 1.2 1.2 1.1 231 231 231 222 Sodium (Na)..... 1.2 6.4 14 Potassium (K) 26 24 Carbonate (CO₃)..... 6 3 400 361 370 410 Bicarbonate (HCO₃)..... 106 102 109 104 Sulfate (SO₄) ······ Chloride (Cl)..... 39 52 34 39 . 3 1.0 1.1 1.2 Fluoride (F) 0 1.5 1.5 1.8 Nitrate (NO.) Dissolved solids 606 599 602 613 Hardness as CaCO,: 10 10 10 9 Total Noncarbonate 0 0 0 0 0 .0 Color..... 8. 5 8.8 8.3 8.6 Specific conductance 983 983 979 (micromhos at 25 C.) Turbidity 79 80 80 Temperature (F.) Feb. 28. Feb. 28. Mar.7. Feb. 11. Date of collection 1952 1943 1952 1949 Depth (feet) 950 935 1,206 Diameter (inches) $8\frac{1}{4} - 6$ 22-85/8 1913 1940 1941 Date drilled Percent of supply

^aComposite sample, wells 1, 4, and 6.

CORPUS CHRISTI (Population, 108, 287)

Ownership: Municipal; supplies also about 15,000 persons outside the city limits, and the town of Clarkwood. Total population supplied, about 123,600.

Source: Nueces River impounded in Lake Corpus Christi near Mathis, Tex., about 35 miles from Corpus Christi. Water is fed from the storage reservoir to a low water reservoir at Calallen, Tex. by the Nueces River. Wells are used as an auxiliary or emergency supply. The wells are pumped individually into the Nueces River, the water flowing down the river into Lake Corpus Christi.

Treatment: Prechlorination, partial softening with lime, primary sedimentation, primary coagulation with alum, sedimentation, secondary coagulation with alum, sedimentation, fluoridation with sodium fluoride, aeration, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 45,000,000 gpd.

Raw-water storage: Lake Corpus Christi, 11,405,000,000 gal.

Finished-water storage: 2 underground reservoirs, 10,000,000 gal each; elevated tanks, 18,750,000 gal.

The water is pumped from the low water reservoir to the treatment plant at Calallen which is 16 miles from Corpus Christi. The finished water is pumped, in part, directly to the distribution system and elevated tanks, and part to two underground reservoirs in Corpus Christi.

There is some variation in the chemical character of the water throughout the year.

The dissolved solids for the period October 1947 to September 1950 ranged from a maximum of 548 ppm to a minimum of 175 ppm.

(Analyses, in parts	ber mmmon,	by 0. 3. Get	ological bul v.	-37
		Nueces R. near Mathis (raw water)	Finished water (city tap)	Well (raw water) ^b
Silica (SiO ₂)	22	22	15	30
Iron (Fe)		. 00	. 00	. 19
Manganese (Mn)		. 0 0	. 00	
Calcium (Ca)		40	3 8	3.6
Magnesium (Mg)	5. 3	3.6	4.5	. 7
Sodium (Na)	10	<i>∫</i> 35	58	244
Potassium (K)	1 f	7.6	9. 2	2. 0
Carbonate (CO ₃)	. 0	0	0	0
Bicarbonate (HCO ₃)	168	142	94	504
Sulfate (SO ₄) ·····	31	34	70	S 5
Chloride (Cl)	39	3 0	69	44
Fluoride (F)			1. 2	. 6
Nitrate (NO_3)	1.3		. 2	. 0
Dissolved solids	280	251	319	675
Hardness as CaCO ₃ :				
Total	132	115	114	12
Noncarbonate	0	0	36	0
Color		25	10	
pH		7. 6		8.1
Specific conductance			• • •	0.1
(micromhos at 25 C.)	452	383	530	1,010
Turbidity	102	0		1,010
Temperature (F.)				13 8
Date of collection	Oct. 1949, to	Oct. 1-31,	Nov. 21,	Mar. 14,
	Sept. 1950	1951	1951	1951
•				

^a Weighted average of analyses of 10-day composites of daily samples for the water year October 1949 to September 1950.

b At Campbellton (one of emergency wells) owned by Lower Nueces River Water Supply District. Depth of well, 4, 130 ft.

CORPUS CHRISTI--Continued Regular determinations at treatment plant, 1951 C

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		198 1 3 8		8. 1 7. 8		8. 0 7. 4	168 135	190 162	120 106	40 	75 	24

c Month of January.

CORSICANA

(Population, 19, 211)

Ownership: Municipal; supplies also about 220 persons outside the city limits. Total population supplied, about 19,400.

Source: Elm Creek impounded in Lake Halbert, approximately $13\frac{1}{2}$ miles southeast of Corsicana, about 63 percent of the supply; Chambers Creek, intake approximately 150 ft south of bridge on State Highway 31, about 37 percent of the supply.

Treatment; Aeration (cascades), prechlorination, coagulation with alum and lime and soda ash at times, sedimentation, rapid sand filtration, and postchlorination. Use at times of activated carbon for odor and taste control.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: Lake Halbert capacity, 2,281,000,000 gal.

Finished-water storage: 1 underground reservoir, 370,000 gal; 2 elevated tanks, 400,000 and 200,000 gal.

Water is pumped from Chambers Creek into Lake Halbert, and is used approximately 9 months of the year when demand is greatest. From Lake Halbert the water flows by gravity to the treatment plant, just below the dam. The fini-. shed water is pumped to the distribution system and to the elevated tanks.

(Imary 503, In parts per	milition, by U.		
	Lake Halbert (raw water)	Chambers Creek (raw water)	Finished water
Silica (SiO ₂)	8.8	15	2.4
Iron (Fe)	.01	. 12	.01
Manganese (Mn)	.00	. 00	. 00
Calcium (Ca) ······		43	62
Magnesium (Mg)	13	3.3	11
Sodium (Na)	46	64	47
Potassium (K)	.8	. 4	2.8
Carbonate (CO ₂)	0	0	0
Bicarbonate (HCO ₃)	141	133	121
Sulfate (SO ₄)		88	150
Chloride (Cl)	29	41	3 6
Fluoride (F)	1.0	. 7	1.0
Nitrate (NO ₃)	2. 0	3.0	.5
Dissolved solids	387	35 8	384
Hardness as CaCO ₃ :			
Total	203	121	200
Noncarbonate	88	12	100
Colon	10	15	0
Color	7. 6	7.4	7.∕6
pH Specific conductance	1.0	1. 4	1.70
	602	534	617
(micromhos at 25 C.)	002	994	011
Turbidity Temperature (F.)		53	53
Date of collection	Feb. 28, 1952	_	Feb. 28, 1952
Date of collection	reb. 20, 1932	reb. 40, 1994	reb. 20, 1932

DALLAS (Population, 434, 462)

Ownership: Municipal; supplies also about 3,000 persons outside the city limits, Arcadia Park, and Cockrell Hill. Total population supplied, about 442,900.

Source: Lake Dallas, about 30 miles north-northwest of Dallas in Denton County on Elm Fork Trinity River, furnishes approximately 99 percent of the supply; 6 wells, 1,260 to 2,690 ft deep, located at various points within the city limits furnishes approximately 1 percent of supply. Auxiliary or emergency supplies can be obtained from White Rock Lake and Bachman Lake.

Treatment: Bachman Plant: softening with lime, addition of activated carbon for odor and taste control, coagulation with iron salts (ferric sulfate), sedimentation, rapid sand filtration, chlorination, and ammoniation. Elm Fork Plant: softening with lime, addition of activated carbon for odor and taste control, primary coagulation, primary sedimentation, secondary coagulation, secondary sedimentation, rapid sand filtration, chlorination, and ammoniation. Wells, chlorination.

Rated capacity of treatment plants: Bachman Plant, 100,000,000 gpd; Elm Fork Plant, 96,000,000 gpd.

Raw-water storage: Lake Dallas (capacity, 63, 215, 000, 000 gal).

Finished-water storage: 2 ground storage tanks, 14,000,000 and 21,000,000 gal; elevated tanks, 4,000,000, 2,000,000, two 1,000,000 gal each, 500,000, 200,000, and 50,000 gal; clear wells: Elm Fork Plant, 14,000,000 gal; Bachman Plant, 10,000,000 gal.

Released water from Lake Dallas flows down the Elm Fork Trinity River through the city of Dallas. The intake to the Elm Fork plant is located on the river directly west of the treatment plant at Carrollton, Tex. The water is pumped to the treatment plant, flows through the treatment plant and is pumped to the north city limits of Dallas. At the city limits part of the water is diverted to the north section of Dallas, supplying that area. The water that is not diverted flows to, and enters, the distribution system from the Bachman Treatment Plant which supplies that area of Dallas south of the plant.

The intake to the Bachman Plant is located on the Elm Fork Trinity River southwest of the Bachman Treatment Plant. The water flows by gravity from the river to the treatment plant, through the plant, and is pumped into the distribution system and storage.

The wells are pumped individually. The water is chlorinated at the well and is pumped directly into the distribution system and elevated tanks. The well supply will be abandoned, except well 39, as soon as those areas now served by the wells can be connected to the Dallas system.

	(activity of the parties per management of the period of t							
	Well 39	Raw		d water				
	(raw		Bachman	Elm Fork				
	water)	water	Plant	Plant				
Silica (SiO ₂)	22	6.0	6.4	4.8				
Iron (Fe)	. 02	. 01	. 01	. 01				
Manganese (Mn)	. 00	. 00	. 00	.00				
Calcium (Ca)	6.0	54	19	19				
Magnesium (Mg)	2.2	6.3	4.4	4.4				
Sodium (Na)	385	3 5	35	35				
Potassium (K)	.8	.4	1. 2	1.6				
Carbonate (CO ₃)	0	0	9	13				
Bicarbonate (HCO ₃)	542	169	20	14				
Sulfate (SO ₄) ·····	259	35	49	47				
Chloride (Cl)	95	43	46	45				
Fluoride (F)	1.8	.3	. 3	. 3				
Nitrate (NO ₃)	.5	.8	.5	.5				
Dissolved solids	1,040	277	186	183				
Hardness as CaCO ₃ :	·							
Total	24	161	66	66				
Noncarbonate	0	22	34	32				

DALLAS, Analyses -- Continued

	Well 39	Raw	Finishe	d water
	(raw water)	water	Bachman Plant	Elm Fork Plant
Color	0	0		
pH Specific conductance	8.2	7. 9	9. 3	9, 6
(micromhos at 25 C.) Turbidity	1,650	481	334	329
Temperature (F.)	112		53	52 Mar 20 1050
Date of collection			Mar. 29, 1952	Mar. 29, 1952
Depth (feet)	2,690			
Diameter (inches)	18-8	l .		
Date drilled				
Percent of supply				

Regular determinations at treatment plant, 1951a

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)		Turbidity				
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		197 63	78 25		8.5 10.8	7. 2 10. 0		232 137	78 44	118 . 27	2250 2.0	17 0.0

^aBachman Plant.

DEL RIO (Population, 14,211)

Ownership: Municipal.

Source: San Felipe Spring, in northeastern Del Rio on municipal golf course

grounds, 0.3 mile north of U. S. Highway 90.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 2 elevated tanks, 1,000,000 gal each.

The water is pumped directly from the spring into the distribution system and elevated tanks. It is chlorinated at the pumps.

ANALYSIS

	San Felipe Spring (raw water)		San Felipe Spring (raw water)
Silica (SiO ₂)	14 . 0	Hardness as CaCO ₃ : Total	218
Manganese (Mn)	.00	Noncarbonate	12
Calcium (Ca)	74 8. 1 6. 0	Color	0 7. 6
Potassium (K)	. 0 0 251	Specific conductance (micromhos at 25 C.)	448
Sulfate (SO ₄)	5.8 9.2 .2	Turbidity. Temperature (F.) Date of collection	Mar. 26,
Nitrate (NO ₃) Dissolved solids	7. 2 254		1952

DENISON (Population, 17,504)

Ownership: Municipal; supplies also about 3,500 persons outside the city limits. Total population supplied, about 21,000.

Source: Lake Randall, approximately $4\frac{1}{2}$ miles northwest of Denison on Shawnee Creek, furnishes 100 percent of the supply except in emergencies. Auxiliary or emergency supply, Lake Texoma.

Treatment: Prechlorination, coagulation with ferric sulfate, softening with lime, ammoniation, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: Lake Randall, capacity 1,760,000,000 gal.

Finished-water storage: 1 elevated tank, 1,000,000 gal; clear well, 750,000 gal.

The water is pumped from Lake Randall to the treatment plant. The finished water from the plant is pumped into the distribution system and elevated storage tank at the north city limits.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	3.5	3.2	Hardness as CaCO ₃ :		
Iron (Fe)	. 01	.0	Total	144	68
Manganese (Mn)	. 0 0	. 00	Noncarbonate	24	10
Calcium (Ca)	47	19			
Magnesium (Mg)	6.5	4.9	Color	5	5
Sodium (Na)	13	14	рН	7.5	7.4
Potassium (K)	1.2	1.2	Specific conductance		ĺ
Carbonate (CO.)	0	o l	(micromhos at		l
Bicarbonate (HCO.)	146	70	25 C.)	333	217
Sulfate (SO ₄)	23	29	Turbidity		
Chloride (Cl)	23	18	Temperature (F.)		
Fluoride (F)	. 3	.2	Date of collection	Feb. 15,	Feb. 15,
Nitrate (NO2)	. 2	.5		1952	1952
Dissolved solids	193	123			

Regular determinations at treatment plant a

	Alkalinity as CaCO ₃ (ppm)			рН			Hardness as CaCO ₃ (ppm)			Temperature (° F.)		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water				7.4			82				72	38
Finished water				8.6			71.				68	45

^aAverage of analyses made by State Health Department over a period of many years.

DENTON (Population, 21, 372)

Ownership: Municipal; supplies also about 200 persons outside the city limits. Total population supplied, about 21,600.

Source: 9 wells (3 to 11), 1,160, 1,134, 1,140, 1,027, 1,153, 1,209, 1,218, 1,202, and 1,009 ft deep. The yield of the wells is reported to range from 325 to 480 gpm. Wells 3 to 6 are at various points within the city limits. The remaining wells are 1 to 2 miles east of the city limits.

Treatment: Chlorination.

Raw-water storage: None.

Finished-water storage: 1 ground reservoir, 1,000,000 gal; 6 ground storage tanks: four, 100,000 gal each and two, 50,000 gal each; 3 elevated tanks, 2,000,000, 360,000, and 250,000 gal.

The wells are pumped individually, the water being chlorinated at each well except that from wells 3 and 4, which is chlorinated as the water is pumped into storage. The water from all of the wells is first pumped into storage from which it is pumped into the distribution system.

ANALYSES

	Well 3 (raw water)	Well 4 (raw water)	Well 5 ^a	Well 7 (raw water)	Well 9 (raw water)
Silica (SiO ₂)	13	12	21	10	12
Iron (Fe)			. 01		
Manganese (Mn)			. 00		
Calcium (Ca)	2.2	2.4	1.4	2.0	.8
Magnesium (Mg)	1.0	1. 2	.9	. 9	. 7
Sodium (Na)	227	235	<i>{</i> 193	187	229
Potassium (K)	[] .221	230	1.6	7 101	223
Carbonate (CO ₃)	31	3 5	14	20	41
Bicarbonate (HCO ₃)	336	390	339	294	314
Sulfate (SO ₄)	121	106	90	102	130
Chloride (Cl)	33	23	21	23	28
Fluoride (F)			. 3		
Nitrate (NO _s)	3.0	1, 2	.0	1.2	1.8
Dissolved solids	610	635	518	506	604
Hardness as CaCO ₂ :	j .				
Total	10	11	7	8	5
Noncarbonate	0	0	0	0	0
Color			0		
рН			8.6		
Specific conductance					
(micromhos at 25 C.)	956	989	830	804	954
Turbidity					
Temperature (F.)			78		
Date of collection	Dec. 3,	Dec. 3,	Mar. 26,		Dec. 3,
	1948	1948	1952	1948	1 94 8
Depth (feet)	1, 160	1, 134	1, 140	1, 153	1, 218
Diameter (inches)	$10\frac{3}{4} - 8\frac{3}{4}$	13-10	$10\frac{3}{4} - 8\frac{6}{4}$		13 3/8
Date drilled	1926	1934	1940		1947
Percent of supply					
	L		L	L	L

aChlorinated water.

EDINBURG (Population, 12,383)

Ownership: Municipal.

Source: Rio Grande. The water is conducted from the river by canal, for a distance of 20 miles, to the city.

Treatment: Aeration (cascades), coagulation with alum and lime, chlorination, sedimentation, and rapid sand filtration. Activated carbon is used at times for odor and taste control.

Rated capacity of treatment plant: 2,000,000 gpd.

Raw-water storage: 8,000,000 gal.

Finished-water storage: 3 elevated tanks, 710,000 gal.

There is a considerable variation in the chemical composition of the raw water throughout the year. Extremes for the water year 1945-46, analyses of 10-day composites of daily samples collected near Mission, Texas: dissolved solids, 284 and 1,260 ppm; hardness, 153 and 498 ppm.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂) Iron (Fe)		15	Hardness as CaCO ₃ : Total	277	278
Manganese (Mn)		.11	Noncarbonate	145	156
Calcium (Ca) Magnesium (Mg) Sodium (Na)		85 16	Color		7.4
Potassium (K) Carbonate (CO ₃)		88 7.4	Specific conductance (micromhos at		7.4
Bicarbonate (HCO ₃)	161	149	25 C.)		949
Sulfate (SO ₄) Chloride (Cl)		193 108	Turbidity Temperature (F.)		
Fluoride (F) Nitrate (NO ₃)		.4 1.8	Date of collection	Aug. 3, 1945	Aug. 3, 1945
Dissolved solids	574	615			

Regular determinations at treatment plant, 1950

	as	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity		
•	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		235 155	80 75		8.3 8.1	7.6 7.6	 375	550	200	160 	290 	25

EL PASO (Population, 130, 485)

Ownership: Municipal; supplies also about 1,000 people in the Sunrise Acres addition outside the city limits, and Fort Bliss with standby fire line. Total population supplied, about 131,500.

Source: 19 wells in 4 well fields: Mesa (north of Fort Bliss), Montana (Central El Paso), Downtown (southwest El Paso, near the Rio Grande), shallow well field (at surface water treatment plant along canal); and the Rio Grande. The wells furnish approximately 46 percent of the total supply. The shallow wells are about 50 ft deep, and the deeper wells range in depth from 425 to 1,055 ft.

Treatment: Well water: chlorination at the wells; surface supply: screening, grit removal, prechlorination, aeration by forced air, primary settling, coagulation with alum or ferric sulfate, softening with lime (and soda ash at times), activated carbon for taste and odor control as required, settling, reflocculation, settling, recarbonation, chlorination, and rapid sand filtration.

Rated capacity of treatment plant: 19,700,000 gpd for well water; 15,000,000 gpd for river water.

Raw-water storage: --

Finished-water storage: 7 ground reservoirs, 70,000,000 gal; elevated tank, 50,000 gal.

The water from the Rio Grande is brought to the treatment plant by canal.

ANALYSES

(Analyses, in parts	per million,	by U. S. Ge	ological Surv	ey)
	Mesa Well Field	Montana Field	Downtown Field	Rio Grande (finished
	(composite)	Well 4	Well 14	water)
Silica (SiO ₂)	39	34	34	21
Iron (Fe)	.0			. 06
Manganese (Mn)				
Calcium (Ca)	32.	49	26	32
Magnesium (Mg)	13	18	10	16
Sodium (Na)		173	<i>[</i> 138	197
Potassium (K)	/	110	1.6	4.0
Carbonate (CO _s)	0	0	0	0
Bicarbonate (HCO ₂)	189	160	170	45
Sulfate (SO ₄)	68	58	70	292
Chloride (Cl)	63	268	139	175
Fluoride (F)	1, 1	. 7		. 5
Nitrate (NO ₃)	7.5	1.0	. 0	.0
Dissolved solids	405	6 88	503	788
Hardness as CaCO ₃ :				
Total	134	196	106	146
Noncarbonate	0	66	0	109
Color	5			
рН	7.9	7.6	7.9	7.3
Specific conductance	7. 9	,	7. 3	1.5
(micromhos at 25 C.)	665	1, 250	867	1,270
Turbidity				
Temperature (F.)				
Date of collection	Apr. 9,	May 31,	June 13,	June 13,
	1951	1950	1951	1951
Depth (feet)		882	703	
Diameter (inches)		24	36	
Date drilled	1	1924	1937	
Percent of supply				

EL PASO--Continued

Regular determinations at treatment plant, 1950

	as	lkalinity s CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Aν	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		258 68	182 33				345 159		290° 135			

FORT WORTH (Population, 278,778)

Ownership: Municipal; supplies about 500 people outside the city limits. Total population supplied, about 279,300. There are several private water companies which supply areas within the city and in the suburbs. The two largest suppliers are the Worth Water Co., which supplies a population of about 2,000, and the Texas Water Co.

Source: 3 lakes: Lake Worth, Eagle Mountain Lake, and Lake Bridgeport, on West Fork Trinity River, about 9 miles west of Fort Worth, about 18 miles northwest of Fort Worth, and about 4 miles northwest of Bridgeport, respectively.

Treatment: Aeration (spray), coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 79,000,000 gpd.

Raw-water storage: Lake Worth, capacity, 9,339,000,000 gal; Eagle Mountain Lake, capacity, 68,755,000,000 gal; Lake Bridgeport, capacity, 95,148,000,000 gal.

Finished-water storage: 2 underground reservoirs, 5,000,000 and 4,500,000 gal; 8 elevated tanks: two 1,000,000 gal each, three 500,000 gal each, one 2,000,000 gal, one 1,500,000 gal, and one 100,000 gal; 1 standpipe, 330,000 gal; and clear wells, 10,000,000 gal.

The three lakes are in series, Lake Bridgeport spilling into Eagle Mountain Lake and Eagle Mountain Lake spilling into Lake Worth. Valves are maintained at the dams of each of the upper lakes allowing water to flow when necessary down the West Fork Trinity River into Lake Worth. The intake is at Lake Worth dam, the water flowing by gravity to the treatment plant. The finished water is pumped from the clear wells into the distribution system, elevated tanks, and underground reservoirs.

FORT WORTH--Continued

ANALYSES

(Analyses, in parts per million, b	v U.	S.	Geological Survey)
------------------------------------	------	----	--------------------

(IIIIIII) DOD, III par un	P 0			,
	Lake Worth (raw water)	Eagle Mt. Lake (raw water)	Finished water	Well a (chlorinated)
Silica (SiO ₂)	5, 6	5, 6	4.4	13
Iron (Fe)		.01	.01	. 18
Manganese (Mn)		.00	.00	•••
Calcium (Ca)		40	45	2.0
Magnesium (Mg)		7.3	7.7	.9
Sodium (Na)	18	17	19	313
Potassium (K)				8.4
Carbonate (CO ₃)	.8	1.2	1.6	14
Bicarbonate (HCO ₃)	_	0	0	
Sulfate (SO ₄) ······		151	158	502
Chloride (Cl)	,	15	22	156
Fluoride (F)	23	21	25	68
Nitrata (NO)	.4	.3	.3	1.8
Nitrate (NO ₃) Dissolved solids		.5	.5	1.8
	197	182	203	817
Hardness as CaCO ₃ :				
Total	139	130	144	8
Noncarbonate	7	6	14	0
Color		5		
рН	7.9	7.7	7.6	8.5
Specific conductance				·
(micromhos at 25 C.)	363	335	374	1,350
Turbidity				/
Temperature (F.)	52	62		76
Date of collection	Mar. 31,	Apr. 2,	Mar. 27,	June 9,
	1952	1952	1952	1949
Depth (feet)	T			1,000
Diameter (inches)				1,000
Date drilled		1		1947
Percent of supply				

Regular determinations at treatment plant, 1951

	as	kalin CaC (ppm)	O ₃		р Н	рН		Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min	
Raw water Finished water	120 117		112 113	8.2 7.8		7. 9 7. 5	123 130	132 136		24 0	37 0	10 0	

^aTexas Water Co.

GAINESVILLE (Population, 11,246)

Ownership: Municipal.

Source: 4 wells (2 to 5) 864, 931, 1,025, and 953 ft deep.

Treatment: None.

Storage: 2 underground reservoirs, 500,000 gal each; 2 elevated tanks, 250, 100

and 100,000 gal; 1 ground reservoir, 50,000 gal.

ANALYSES

(Analyses, in parts	per million,	by U. S. Ge	ological Sulv	ey)
	Well 2	Well 2	Well 3	Well 4
Silica (SiO ₂)	13		10	9. 2
Iron (Fe)	16		.02	.01
Manganese (Mn)				
Calcium (Ca)	2.4		3.6	2.3
Magnesium (Mg)	1.0		1.0	.6
Sodium (Na)	196		194	170
Potassium (K)	1.9		3.0	3.1
Carbonate (CO ₃)	48	28	26	32
Bicarbonate (HCO ₃)	386	412	340	348
Sulfate (SO_4)	31		31	26
Chloride (Cl)	5,0	6	58	10
Fluoride (F)	. 2		. 2	. 2
Nitrate (NO ₃)	1.2		1.0	1.2
Dissolved solids	487		536	442
Hardness as CaCO ₃ :				
Total	10	6	13	8
Noncarbonate	0	0	0	0
Color				
pH				
Specific conductance	8. 6	8.9	7.8	7.9
(micromhos at 25 C.)	804	005	000	720
Turbidity	804	805	869	730
Temperature (F.)		65	69	
Date of collection	March.	June 4.	Feb. 25.	Feb. 25,
	1944	1952	1944	1944
Double (for the				
Depth (feet)	. 001	864	931	1,025
Diameter (inches)	10-8	10-8		$18.5/8 - 10\frac{3}{4}$
Date drilled	1912	1912	1931	1937
Percent of supply				

GALVESTON (Population, 66, 568)

Ownership: Municipal; supplies also about 5,300 persons outside the city limits. Total population supplied, about 71,900.

Source: 13 wells (1 to 13), in and extending north and south of Alta Loma, approximately 20 miles northwest of the city of Galveston. Well 14 has not been connected with the system. The depths of the wells range from 764 to 888 ft. Wells 9 to 13 are pumped continuously and wells 1, 2, 6, and 7 are usually pumped. Additional demand is met by placing wells 3, 4, 5, and 8 in service.

Treatment: Chlorination and addition of polyphosphate at the Alta Loma pumping plant for scaling and corrosion control. Rechlorination at 59th and 30th Streets pumping plants upon pumping into the distribution system.

Rated capacity of pumping plant (Alta Loma): 18,000,000 gpd.

Raw-water storage: --

Finished-water storage: 3 reservoirs, 1,763,000, 1,777,000, and 3,812,000 gal; 2 reservoirs, 2,994,000 gal each; 2 reservoirs, 2,752,000 gal each; 2 reservoirs, 3,416,000 gal each; and 1 standpipe, 625,000 gal.

The water is pumped from the wells, as a unit, to the pumping station at Alta Loma, where additional head is obtained to pump the water under Galveston Bay to Galveston Island to two pumping stations, at 59th Street and 30th Street, from which the water is pumped into the storage reservoirs, standpipe, and the distribution system.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

| Well 1 | Well 8 | Well 9 | Well 13 | (raw | (raw | (raw |

	(raw water)	well 8 (raw water)	well 9 (raw water)	(raw water)	Finished water
Silica (SiO ₂)			28		31
Iron (Fe)					. 00
Manganese (Mn)				!	
Calcium (Ca)	22	54	17	17	30
Magnesium (Mg)	4.4	11	7.5	5.6	9. 7
Sodium (Na)	308	545	257	245	351
Potassium (K)	ו				
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	338	338	339	348	336
Sulfate (SO ₄)	2	2	2. 1	2	1.0
Chloride (Cl)	328	770	250	220	422
Fluoride (F)					. 9
Nitrate (NO ₃)			. 2	. 5	. 3, 5
Dissolved solids	853	1,550	729	659	1,010
Hardness as CaCO ₃ :					
Total	73	180	74	66	115
Noncarbonate	0	.0	0	0	0
Color		,			
рН			7. 9		8.0
Specific conductance			1. 8		0.0
(micromhos at 25 C.)	1,570	2,870	1,320	1, 170	1,830
Turbidity				·	
Temperature (F.)					
Date of collection	July 11,	July 11,	May 9,	Nov. 10,	May 11,
1	1947	1947	1949	1947	1951
Depth (feet)	840	884	764	810	
Diameter (inches)	12	20	18 5/8	18 5/8	
Date drilled	1914	1935	1942	1942	
Percent of supply			~-		

GARLAND (Population, 10,571)

Ownership: Municipal.

Source: 4 wells (1 to 4) 2,303, 2,318, 3,633, and 3,680 ft deep, located at different points within the city limits. The yield of the wells is reported to be 173, 278, 500, and 1,060 gpm.

Treatment: Aeration (cascades) and chlorination.

Raw-water storage: None.

Finished-water storage: 2 elevated tanks, 150,000 and 75,000 gal; 2 ground reservoirs, 500,000 and 315,000 gal.

The wells are pumped individually, the water being chlorinated at each well. The water is aerated, primarily for cooling, as it flows into the ground reservoirs, from which it is pumped into the distribution system and elevated tanks.

ANALYSES

Well 3 (raw water water) Well 3 (raw water water) Well 3 (raw water water) Well 3 (raw water water) Well 3 (raw water) Well 5 (raw water) Well 5 (vity tap		T	أ 			
water) (city tap) water) (city tap) Silica (SiO ₂) 25 21 Hardness as CaCO ₃ : 25 Iron (Fe) .02 .01 Total 13 9 Manganese (Mn) .00 Noncarbonate 0 0 Calcium (Ca) 3.9 2.3 Color 0 Sodium (Na) 425 354 pH 8.6 8.4 Potassium (K) 12 6.0 Specific conductance (micromhos at 25 12 Improved to the conductance of the condu		Well 3	Finished	1	Well 3	Finished
Silica (SiO ₂) 25 21 Hardness as CaCO ₃ : 13 9 Manganese (Mn) 00 Noncarbonate 0 0 Calcium (Ca) 3.9 2.3 Color 0 Magnesium (Mg) 9 8 Color 0 Sodium (Na) 425 354 PH 8.6 8.4 Potassium (K) 12 6.0 Specific conductance (micromhos at 25 12 Bicarbonate (HCO ₂) 468 559 25 C.) 1,460 Sulfate (SO ₄) 370 214 Turbidity Chloride (Cl) 97 48 Temperature (F.) 127 74		(raw	water		(raw	water
Silica (SiO ₂) 25 21 Hardness as CaCO ₃ : 13 9 Manganese (Mn) 00 Noncarbonate 0 0 Calcium (Ca) 3.9 2.3 Color 0 Magnesium (Mg) 9 8 Color 0 Sodium (Na) 425 354 PH 8.6 8.4 Potassium (K) 12 6.0 Specific conductance (micromhos at 25 12 Bicarbonate (HCO ₂) 468 559 25 C.) 1,460 Sulfate (SO ₄) 370 214 Turbidity Chloride (Cl) 97 48 Temperature (F.) 127 74		water)	(city tap)	ĺ	water)	(city tap)
Total 13 9 Noncarbonate 13 9 Noncarbonate 13 9 Noncarbonate 13 9 Noncarbonate 13 9 Noncarbonate 14 15 15 15 15 15 15 15	G:2: (G:0.)			774 0-00	1	(1)
Manganese (Mn) 00 Noncarbonate 0 0 Calcium (Ca) 3.9 2.3 Color 0 Magnesium (Mg) 9 8 Color 0 Sodium (Na) 425 354 PH 8.6 8.4 Potassium (K) 12 6.0 Specific conductance (micromhos at 25 C.) 1,460 Sulfate (SO ₄) 370 214 Turbidity Chloride (Cl) 97 48 Temperature (F.) 127 74			21		i	
Manganese (Mn) 3.9 .00 Noncarbonate 0 0 Calcium (Ca) 3.9 2.3 Color 0 Magnesium (Mg) 9 8 Color 0 Sodium (Na) 425 354 pH 8.6 8.4 Potassium (K) 12 6.0 Specific conductance (micromhos at 25 25 1,460 Sulfate (SO ₄) 370 214 Turbidity Chloride (Cl) 97 48 Temperature (F.) 127 74			.01		13	. 9
Calcium (Ca) 3.9 2.3 Color 0	Manganese (Mn)			Noncarbonate	0	0
Magnesium (Mg) .9 .8 Color	Calcium (Ca)	3.9				
Sodium (Na) 425 354 ph	Magnesium (Mg)			Color	1	1 0
Potassium (K) 12 6.0 Specific conductance (micromhos at 25 C.) Line (micromhos at 25 C.) 1,460 Sulfate (SO ₄) 370 214 Turbidity 1,460 Chloride (Cl) 97 48 Temperature (F.) 127 74	Sodium (Na)	_		pH	8.6	8.4
Carbonate (CO ₃) 25 12 (micromhos at Bicarbonate (HCO ₃) 468 559 214 Turbidity 7480 Turbidity 127 74	Potassium (K)		1	Specific conductance	ì	
Bicarbonate (HCO ₂) 468 559 25 C.)	Carbonate (CO.)				1	
Sulfate (SO ₄)	Bicarbonate (HCO.)		, 1	25 C.)		1,460
Chloride (Cl) 97 48 Temperature (F.) 127 74		1	1 1			
771	Chloride (Cl)	97			127	74
		1	1	Date of collection	Feb. 23.	Mar. 28.
Nitrate (NO.) 8 2 0 1944 1952	Nitrate (NO.)	g	1 .	1	1944	1952
Dissolved solids1, 170 947	Dissolved solids	1, 170				l
Depth (feet)			• • • • • • • • • • • • • • • • • • • •		3,633	
Diameter (inches)	Diameter (inches)	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
Date drilled 1942	Date drilled		•••••		1942	
Percent of supply					1010	

GRAND PRAIRIE (Population, 14,594)

Ownership: Municipal; supplies also about 200 persons outside the city limits. Total population supplied, about 14,800.

Source: 8 wells: 2 wells (5 and 14), Northwest Third Street, 345 and 2,077 ft deep; 3 wells (6, 7, and 12), Davis Street, 430, 2,065, and 412 ft deep; 3 wells (8, 10, and 13), Dallas Street, 2,026, 283, and 2,047 ft deep. The yield of the wells is reported to range from 50 to 600 gpm.

Treatment: Chlorination.

Raw-water storage: None.

Finished-water storage: 1 underground reservoir, 100,000 gal; 3 ground reservoirs, one, 300,000 gal and two, 100,000 gal each; 3 elevated tanks, 500,000, 100,000, and 50,000 gal.

The wells are pumped individually and chlorinated by groups. The water from wells 5 and 14 is chlorinated in the water line leading to the reservoirs; that from wells 6, 7, 8, 10, 12, and 13 is chlorinated as it discharges into the ground storage reservoirs. The water is pumped from the ground reservoirs into the distribution system and elevated tanks.

ANALYSES

	Well 6	Well 8	Well 13
Silica (SiO ₂)	12	16	16
Iron (Fe)	. 08	, 11	. 05
Manganese (Mn)			.00
Calcium (Ca) ······	1.0	3, 7	2.2
Magnesium (Mg)	. 5	. 9	1.0
Sodium (Na)) a.=	010	318
Potassium (K)	} 247	319	2.0
Carbonate (CO ₃)	7.	29	10
Bicarbonate (HCO _s)	5 0 5	485	515
Sulfate (SO ₄)	84	131	138
Chloride (Cl)	19	83	82
Fluoride (F)		1. 9	1.8
Nitrate (NO ₃)	2.5	2.0	1.8
Dissolved solids	637	816	836
Hardness as CaCO ₃ :			
Total	4	12	10
Noncarbonate	00	0	0
Color			. 0
рН	8.6	8.7	8.4
Specific conductance		٠.,	9.1
(micromhos at 25 C.)	1,020	1,350	1,350
Turbidity	-,	-,	-,
Temperature (F.)			91
Date of collection	June 16, 1949	June 23, 1943	Mar. 28, 1952
Depth (feet)	430	2,026	2,047
Diameter (inches)	10-7	2,020	13 5/8-10
	1942	1942	1946
Percent of supply			

GREENVILLE (Population, 14,727)

Ownership: Municipal; supplies also Aidis Heights, Mineral Heights, Peniel, and Reavilon. Total population supplied, about 17,400. The city also furnishes Major Airfield.

Source: 4 reservoirs, (1 to 4), north of city supplied with water from the Sabine River.

Treatment: Coagulation with alum and lime, sedimentation, and chlorination. Copper sulfate, at times, for algae control.

Rated capacity of treatment plant: 6,000,000 gpd.

Raw-water storage: Reservoirs (1 to 4), 36,000,000, 52,000,000, 136,000,000, and 1,076,539,000 gal, respectively.

Finished-water storage: Elevated tank, 172,000 gal.

Water is diverted from the Sabine River into a canal by means of a low water diversion dam, approximately 2 miles upstream from the reservoirs. The water flows by gravity through the canal into the system of reservoirs and into the treatment plant. The finished water is pumped into the distribution system and elevated tank.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Reser- voir 2ª	Finished water		Reser- voir 2 ^a	Finished water
Silica (SiO ₂)	2. 4	0.8	Hardness as CaCO ₃ :		
Iron (Fe)	. 08	. 03	Total	122	137
Manganese (Mn)	. 00	. 00	Noncarbonate	5	27
Calcium (Ca)	38	44	· · · · · · · · · · · · · · · · · · ·		
Magnesium (Mg)	6.5	6.5	Color	10	10
Sodium (Na)	21	22	рН	7.9	7.4
Potassium (K)	. 8	4	Specific conductance		
Carbonate (CO ₂)	0	0	(micromhos at	1	
Bicarbonate (HCO ₂)	142	134	25 C.)	347	370
Sulfate (SO ₄)	32	49	Turbidity		
Chloride (Cl)	13	15	Temperature (F.)	55	56
Fluoride (F)	. 3	.3	Date of collection	Mar. 25,	Mar. 25,
Nitrate (NO ₃)	.0	.0		1952	1952
Dissolved solids	205	213]	

Regular determinations at treatment plant, 1951

	as	kalin CaC (ppm)	O ₃		pН		as	rdnes CaCC ppm)		T	urbidi	t y
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water				8. 2 8. 2	8. 2 8. 4	8. 0 7. 4						

a Raw water.

HARLINGEN (Population, 23, 229)

Ownership: Municipal; supplies about 1,300 persons outside the city limits. Total population supplied, about 24,500.

Source: Rio Grande.

Treatment: Plain sedimentation, periodic use of activated carbon for taste and odor control, periodic use of copper sulfate (in reservoir) for control of algae, aeration (spray), prechlorination, coagulation with alum and lime, sedimentation, rapid sand filtration, and postchlorination. The same treatment is used at both plants.

Rated capacity of treatment plants: City Plant, 4,000,000 gpd. Airport Plant, 2,700,000 gpd.

Raw-water storage: Reservoir, 55,000,000 gal.

Finished-water storage: 1,400,000 gal.

The water is pumped from the Rio Grande into a canal connected with the reservoir at the treatment plants. The finished water from the plants is pumped into a common reservoir from which it is pumped into the distribution system and elevated tanks. There is considerable variation in the composition of the water throughout the year.

(Analyses, in parts per million, by U. S. Geological Survey)

ANALYSES

	Finished water	Reservoir (raw water)	Finished water
Silica (SiO ₂)	10	11	9.0
Iron (Fe)	. 07	.0	.0
Manganese (Mn)		. 00	.00
Calcium (Ca) ······	, 64	92	95
Magnesium (Mg)		33	33
Sodium (Na)	122	202	203
Potassium (K)	4.0	2.8	2.8
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	122	149	138
Sulfate (SO ₄)	186	274	289
Chloride (Cl)	158	284	286
Fluoride (F)	. 5	.8	.8
Nitrate (NO ₃)	. 5	.5	. 2
Dissolved solids	628	1,000	1,020
Hardness as CaCO ₃ :		·	
Total	250	365	372
Noncarbonate	150	243	260
Color		5	5
pH	7.4	8.0	8.0
Specific conductance			
(micromhos at 25 C.)	1,060	1,640	1,670
Turbidity	·		
Temperature (F.)			
Date of collection	June 7, 1951	Feb. 11, 1952	Feb. 11, 1952

HIGHLAND PARK (Population, 11,405)

Ownership: Dallas County Park Cities Water Control and Improvement District No. 2 (supplies Highland Park and University Park).

Source: Elm Fork Trinity River. The intake is approximately 2,000 ft southwest of the Park Cities treatment plant and approximately 100 ft below the intake to city of Dallas' Bachman treatment plant. Auxiliary or emergency supply can be obtained from the city of Dallas.

Treatment: Activated carbon for odor and taste control, coagulation with ferric sulfate, softening with lime, sedimentation through clarifiers, filtration through anthracite, and chlorination.

Rated capacity of treatment plant: 25,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 4 elevated tanks, 2,000,000, 850,000, 500,000, and 300,000 gal: clear well, 10,000,000 gal.

The water flows by gravity from the Elm Fork Trinity River to the treatment plant. The finished water is pumped from the plant to the two Park Cities (Highland Park and University Park) into the distribution system and elevated tanks.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water (city tap)		Raw	Finished water (city tap)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	6.0 .01 .00	12 . 01 . 00	Hardness as CaCO ₃ : Total Noncarbonate	161 22	
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₄)	54 6.3 35 .4	20 3.5 35 2.4	Color	7. 9	9.8
Bicarbonate (HCO ₂) Sulfate (SO ₂) Chloride (Cl) Fluoride (F)	169 35 43	22 · 1 44 · 45	25 C.)	481 54 Mar. 29,	68
Nitrate (NO ₃) Dissolved solids	.3 .8 277	.3 .2 189	Dute 01 (0110011011111	1952	1952

Regular determinations at treatment plant, 1951

,	Alkalinity as CaCO ₃ (ppm)			рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water	160	206	83	8.0	8. 5	7.7	150	209	114	110	4000	20
Finished water	45	48	41	10.4	10. 5	10.3	72	128	. 52			

HOUSTON (Population, 596, 163).

Ownership: Municipal; supplies also about 3,800 persons outside the city limits. Total population supplied, about 600,000.

Source: 68 wells. Fifty-one wells are in seven well fields in the older section of the city. Seventeen wells are in ten areas recently annexed by the city; these wells supply only about 5,000,000 gpd. The depths of the wells range from 544 to 2,580 ft, and the reported yield from 125 to 2,360 gpm. The average yield (data on 61 wells) is 1.462 gpm.

Treatment: Chlorination.

Raw-water storage: None.

Finished-water storage: Total, 51,000,000 gal. Ground storage tanks at the following pumping plants: Central, 19,000,000 gal; East End, 3,200,000 gal; Heights, 3,750,000 gal; Northeast, 3,200,000 gal; Scott Street, 2,000,000 gal; South End, 2,000,000 gal; Southwest, 6,000,000 gal. Elevated tanks throughout the city, 11,850,000 gal.

The wells are pumped individually. The water is pumped to ground storage tanks (being chlorinated before entering the tanks) from which it is pumped into the distribution system and elevated tanks. Each field is a system within itself, however, all of the systems are interconnected.

ANALYSES

(Line) to put in participation, by or or occupation,								
	South End well 7	Scott St. well 4	South Park well 2	Southwest well 5	Central well C-20			
6111 (010)								
Silica (SiO ₂)	16	17	21	22	16			
Iron (Fe)	.0	. 0	05		. 15			
Manganese (Mn)	. 00		. 00					
Calcium (Ca)	7. 2	12	37	18	12			
Magnesium (Mg)	2,5	• 3.6	7.4	4.5	4.9			
Sodium (Na)	147	139	64	113	152			
Potassium (K)	. 4	. 4	1.6	113	2.4			
Carbonate (CO ₃)	0	0	0	18	0			
Bicarbonate (HCO ₃)	328	317	246	250	340			
Sulfate (SO_4)	2.6	5.6	15	7.0	3.1			
Chloride (Cl)	51	56	34	47	71			
Fluoride (F)	. 8	. 8	. 3		1.0			
Nitrate (NO ₃)	.0	. 0	. 5	. 2	.0			
Dissolved solids	392	388	298	346	433			
Hardness as CaCO ₃ :]					
Total	28	45	123	64	50			
Noncarbonate	0	0	0	0	0			
Color	10	10	10					
pH	8.0	7.8	7. 9		7. 7			
Specific conductance								
(micromhos at 25 C.)	651	660	509	597	734			
Turbidity								
Temperature (F.)					84			
Date of collection	Feb. 11,	Feb. 11,	Feb. 11,	Feb. 8,	Mar. 26,			
	1952	1952	1952	1949	1949			
Depth (feet)	1, 932	1, 756	853	1, 401	1, 940			
Diameter (inches)	$24 - 12\frac{3}{4}$		8	$24-12\frac{3}{4}$	$24-12\frac{3}{4}$			
Date drilled.	1944	1931	1949	1945	1949			
Percent of supply								
			L,		L			

HOUSTON--Continued ANALYSES

V	P				3/
	East	Northeast	Heights	Irvington	Garden Oaks
	End	well	well	well	well 3
	well 4	9	10	WCII	weii 3
Silica (SiO ₂)	18	20	22	20	22
Iron (Fe)	. 17	. 15	. 18	. 0	.0
Manganese (Mn)				.00	.00
Calcium (Ca)	5.3	11	28	36	36
Magnesium (Mg)	1.5	3.0	8.0	10	8.9
Sodium (Na)	219	153	102	52	64
Potassium (K)	6.8	8.4	2.8	. 4	.4
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	420	314	289	218	238
Sulfate (SO ₄)	1. 1	12	9.8	12	11
Chloride (Cl)	109	80	57	37	43
Fluoride (F)	1.8	.8	. 6	. 1	.3
Nitrate (NO ₃)	. 0	. 0	.0	.0	.0
Dissolved solids	576	441	383	270	297
Hardness as CaCO ₃ :					1
Total	19	40	103	131	126
Noncarbonate	0	0	0	0	0
Color			0	10	10
pH	8.0	7.9	7.5		7.6
Specific conductance	٥.٠			•••	'''
(micromhos at 25 C.)	1,000	741	661	475	515
Turbidity					
Temperature (F.)	96	85	80		
Date of collection	June 27,	Apr. 21,	July 23,	Feb. 11,	Feb. 11,
	1949	1950	1949	1952	1952
Depth (feet)	2,530	1,940	1,880	1,070	1, 100
Diameter (inches)	$24 - 12\frac{3}{4}$		$24-12\frac{3}{4}$		
Date drilled	1948	1949	1949		1945
Percent of supply					

KINGSVILLE (Population, 16,898)

Ownership: Municipal; supplies also about 300 persons outside the city limits.

Total population supplied, about 17, 200.

Source: 6 wells. Wells 2 and 5 are at the City Hall, well 4 is 2 blocks east of City Hall, wells 6 and 7 are on 12th Street, and well 8 is on 14th Street. The wells pump directly into the distribution system and elevated tanks.

Treatment: Chlorination at each well. Batch chlorination on elevated tanks when

filled.

Raw-water storage: None.

Finished-water storage: Elevated tanks, 2,000,000 gal.

ANALYSES

	Well 2	Well 4	Well 5
Silica (SiO ₂)	14	11	17
Iron (Fe)	. 02	. 02	. 03
Manganese (Mn)			
Calcium (Ca) ······	22	24	21
Magnesium (Mg)	8.6	9. 6	7.5
Sodium (Na)	305	317	<i>{</i> 308
Potassium (K))	12
Carbonate (CO ₃)	15	0	6
Bicarbonate (HCO ₃)	277	304	303
Sulfate (SO ₄)	162	163	162
Chloride (Cl)		255	235
Fluoride (F)		.4	. 5
Nitrate (NO ₃)	9.0	12	9.2
Dissolved solids	956	95 9	951
Hardness as CaCO ₃ :	_		
Total	90	100	84
Noncarbonate	0	0	0
Color			
pH		8. 2	
Specific conductance			
(micromhos at 25 C.)	1,580		1,560
Turbidity	·		
Temperature (F.)	85		85
Date of collection		Feb. 5, 1943	Mar. 16, 1945
Depth (feet)		725	737
Diameter (inches)		8	16-8
Date drilled		1939	1943
Percent of supply			
•	<u> </u>	L	

LAMESA (Population, 10,704)

Ownership: Municipal; also supplies about 2,000 people outside the city limits, and an estimated 1,000 people at labor camp 4 miles southeast of Lamesa. Total population supplied, about 13,700.

Source: 18 wells ranging in depth from 138 to 300 ft, all in one well field.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: Underground reservoirs and elevated tanks, 1,300,000

gal.

The wells are pumped individually, the water pumped being chlorinated at four points before entering the underground storage tanks, from which it is pumped to the distribution system.

ANALYSES

	Well 4	Well 12	Well 13	Well 17	Title tests and
	(raw	(raw	(raw	(raw	Finished
	water)	water)	water)	water)	water ^a
Silica (SiO ₂)	39	33	72	38	37
Iron (Fe)	6.0	. 02	. 06	18	. 03
Manganese (Mn)					
Calcium (Ca)	35	33	74	46	38
Magnesium (Mg)	55	54	75	70	57
Sodium (Na)	167	176	54	112	164
Potassium (K)	14	14	8. 2	14	25
Carbonate (CO ₄)	0	0	0	0	.0
Bicarbonate (HCO ₃)	376	390	402	372	388
Sulfate (SO ₄)	191	195	160	176	193
Chloride (Cl)	126	122	70	116	130
Fluoride (F)	3.2	3, 2	4.4	5. 2	5.6
Nitrate (NO ₃)	3.2	3.0	18	. 5	2.5
Dissolved solids	824	836	760	798	839
Hardness as CaCO:					
Total	314	304	493	403	330
Noncarbonate	6	0	164	98	12
Color					
pH	7.7	7.7	7.5	7.5	7.6
Specific conductance					
(micromhos at 25 C.)	1,280	1,290	1,110	1,230	1,380
Turbidity					
Temperature (F.)	67	67	65		
Date of collection	Sept. 12,	Sept. 12,	Sept. 13,	Sept. 13,	Nov. 27,
•	1947	1947	1947	1947	1946
Depth (feet)	150	160	168	182	
Diameter (inches)	10-8	160			
Date drilled	1945			14	
Percent of supply		1945	1946	1947	
sepp-j					

^a Tap sample, Pumping Plant No. 1.

LAREDO (Population, 51, 910)

Ownership: Municipal. Source: Rio Grande.

Treatment: Aeration (spray), prechlorination, coagulation with alum and lime,

sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 7,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 2 ground reservoirs, 2,000,000 and 2,200,000 gal; 1

underground reservoir, 375,000 gal.

The water is pumped from the Rio Grande to the treatment plant. The finished water is pumped into the three storage reservoirs, from which it is pumped into the distribution system.

There is considerable variation in the composition of the raw water throughout the year.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)		9.6	Hardness as CaCO ₃ :		
Iron (Fe)		. 01	Total	322	328
Manganese (Mn)	. 00	. 00	Noncarbonate	204	216
Calcium (Ca)	75	77			
Magnesium (Mg)	33	33	Color	0	Q
Sodium (Na)	165	159	pH	8.0	7.7
Potassium (K)	. 4	.8	Specific conductance		
Carbonate (CO ₃)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	144	136	25 C.)	1,380	1,390
Sulfate (SO ₄)	2 48	256	Turbidity		
Chloride (Cl)	215	218	Temperature (F.)	76	77
Fluoride (F)	. 9	.8	Date of collection	Apr. 21,	Apr. 21,
Nitrate (NO ₂)	. 8	.8	ļ	1952	1952
Dissolved solids	849	845			

	Alkalinity as CaCO ₃ (ppm)			р Н			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water			59 47	8. 1 7. 7	8.3 8.2	7. 7 7. 3	270 270	390 400	96 105	700 0	10800 2	35 0

LONGVIEW (Population, 24, 502)

Ownership: Municipal; supplies also about 400 persons outside the city limits, and community of Greggton. Total population supplied, about 27, 100.

Source: Lake Cherokee, approximately 8 miles southeast of the city on Cherokee Bayou. Auxiliary or emergency supply, Big Sandy Creek (diversion dam near Big Sandy, Upshur County, Tex.).

Treatment: Prechlorination, aeration (spray), coagulation with alum, activated carbon for odor and taste control, sedimentation, addition of lime for pH control, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 10,000,000 gpd.

Raw-water storage: 2 surface reservoirs, 11,000,000 and 2,000,000 gal. Finished-water storage: 2 surface reservoirs, 2,000,000 and 500,000 gal; 2 elevated tanks, 1,000,000 and 150,000 gal; 2 elevated tanks, 200,000 gal each.

The water is pumped, intake approximately $2\frac{1}{2}$ miles upstream from the impounding dam, to the treatment plant about 1 mile outside the city limits. The finished water is pumped into town to 1,000,000 gal elevated tank and then into the distribution system and storage.

ANALYSES

	Lake Cherokee (raw water)	Lake Cherokee (raw water)	Finished water
Silica (SiO ₂)	6.0	7.8	8.2
Iron (Fe)	. 48	. 70	. 03
Manganese (Mn)	. 0	. 00	. 00
Calcium (Ca) ·····	6.8	3.5	12
Magnesium (Mg)	3.3	2.3	3.7
Sodium (Na)	6.0	8.7	5.0
Potassium (K)	6.0) o. 1	1.6
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	25	14	20
Sulfate (SO_4)	16	13	23
Chloride (Cl)	8.5	7.8	14
Fluoride (F)	. 0	. 2	.1
Nitrate (NO ₃)	. 0	. 5	.5
Dissolved solids	68	73	92
Hardness as CaCO ₃ :			
Total	30	18	45
Noncarbonate	10	7	29
Colon		20	15
Color	30		
pH	6.8	6.6	7.2
Specific conductance	100	0.1	194
(micromhos at 25 C.)	109	81	134
Turbidity			57
Temperature (F.)		57	
Date of collection	June 4, 1949	Feb. 27, 1952	Feb. 27, 1952

LUBBOCK (Population, 71,747)

Ownership: Municipal.

Source: 64 wells. Wells 1 to 19 are located at separate points in the city and the remaining wells in 2 well fields: one field of 30 wells in an area directly northwest of the city; the other of 15 wells in an area directly northeast of the city. Wells 1 to 3 are 98, 300, and 210 ft deep; the remaining wells (depths reported for 56) range from 106 to 158 ft deep. The average yield of the wells (yields reported for 59) is 498 gpm.

Treatment: Chlorination.

Rated capacity of pumping plant: 40,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 19,000,000 gal.

The wells are pumped in groups to ground storage reservoirs; from these reservoirs the water is pumped to a booster station where it is pumped into the distribution system.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Well 1 Well 2 Well 3 Well 4 Well 10 Silica (SiO₂) 52 --Iron (Fe)02 ___ Manganese (Mn) Calcium (Ca) 50 78 57 63 48 Magnesium (Mg) 56 96 65 63 57 Sodium (Na) 79 74 76 69 160 Potassium (K) 23 Carbonate (CO₃) 0 0 0 0 n Bicarbonate (HCO₃)..... 423 318 316 331 325 Sulfate (SO₄) 379 169 165 139 121 Chloride (Cl) 62 79 98 126 110 Fluoride (F) 3.2 3.5 5.4 3.4 Nitrate (NO₃) 7.5 4.1 . 8 3.2 11 Dissolved solids 1,200 746 738 628 629 Hardness as CaCO,: Total 589 354 356 410 416 Noncarbonate 242 157 83 89 150 Color pH 8.1 Specific conductance (micromhos at 25 C.) 1,130 Turbidity --------Temperature (F.)...... Date of collection Sept. 22, Feb. 15, Sept. 22, Oct. 2, Sept. 22, 1944 1944 1944 1944 1944 Depth (feet) 98 300 210 156 151 Diameter (inches)...... 24 - 1824 24 24 24 Date drilled 1925 1938 1925 1928 1917 Percent of supply --

L UBBOCK--Continued

ANALYSES

	·				
	Well 13	Well 15	Well 16	Well 19	Well 31
Silica (SiO ₂)		55		64	49
Iron (Fe)		.0		.06	.01
Manganese (Mn)		.00			.00
Calcium (Ca)	76	59	45	69	49
Magnesium (Mg)	94	57	58	80	40
Sodium (Na)	100	(115) 50	150	(53
Potassium (K)	} 166	12	59	150	7.6
Carbonate (CO ₂)	۰ ر	0	0	0	0-
Bicarbonate (HCO ₃)	345	368	249	317	304
Sulfate (SO ₄)	421	227	120	272	85
Chloride (Cl)	146	68	98	190	43
Fluoride (F)	3.2	2.8	3.5	4.1	2.0
Nitrate (NO _s)	1.5	2.5	2.8	5.1	4.5
Dissolved solids	1,200	780	619	1,030	494
Hardness as CaCO _s :	,			,	
Total	576	382	351	501	287
Noncarbonate	294	80	147	241	38
Color					
pH]	7. 5		7.5	8.3
Specific conductance		7.5		7.5	8.3
(micromhos at 25 C.)	1	1 100		1 500	766
Turbidity		1,180		1,580	. 100
Temperature (F.)					
Date of collection	c	N 10	C-nt 25	Fab 15	Nov. 10
Date of Coffeeding	Sept. 22, 1944	Nov. 10, 1951	Sept. 25, 1944	Feb. 15, 1945	Nov. 10, 1951
Depth (feet)					
Diameter (inches)	150		135	145	
Date drilled	22-18		22-18	22-18	
Percent of supply	1939		1941	1945	1947
researe of pupping					

LUFKIN (Population, 15, 135)

Ownership: Municipal.

Source: 3 wells (3, 5, and 6), 1,168, 1,175, and 1,175 ft deep, about $4\frac{1}{2}$ miles north of the city limits; auxiliary supply, 1 well (4), 66 ft deep, and 650 acre-ft lake (small streams impounded), about 2 miles north of the city limits. The yield of the wells is reported to be 640, 850, and 900 gpm. The auxiliary well is reported to yield 375 gpm.

Treatment: Aeration (trays) and chlorination.

Rated capacity of pumping plant: 3,500,000 gpd.

Raw-water storage: --

Finished-water storage: 2 elevated tanks and surface reservoirs, 1, 200, 000 gal.

The wells are pumped individually or in groups as needed, aerated at the well, chlorinated before entering the station reservoirs about 2 miles from the city's north limits. The water is pumped from the station reservoirs into 2 elevated tanks located in the city, then to the distribution system.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Well 3 Well 5 Well 6 Well 4 (raw (raw (raw (raw water) water) water) water) 18 Silica (SiO₂) 17 19 58 Iron (Fe)..... . 17 1.4 .00 Manganese (Mn) 5 7.9 Calcium (Ca)..... 1.7 . 2 . 2 . 7 . 5 Magnesium (Mg) 3.7 Sodium (Na)..... 134 26 150 142 1. 2 Potassium (K) 4.1 Carbonate (CO.) 7 0 0 g Bicarbonate (HCO₃)..... 55 244 260 244 6.5 Sulfate (SO₄) 79 79 68 Chloride (Cl)..... 32 13 17 13 . 2 Fluoride (F)0 . 2 Nitrate (NO₃) 2 . 2 . 0 Dissolved solids 406 385 181 357 Hardness as CaCO,: 2 7 2 35 Total Noncarbonate 0 0 0 0 15 8.3 8.8 8.7 6.2 pH Specific conductance 204 (micromhos at 25 C.) 565 665 625 Turbidity --66 Temperature (F.) 1,221 Depth (feet) 1, 168 1, 175 66 Diameter (inches) 16-10 18 - 1018-10 24 - 16Date drilled 1946 1948 1944 1939 Percent of supply

MCALLEN (Population, 20,067)

Ownership: Municipal. Source: Rio Grande.

Treatment: Chlorination, aeration (trays), coagulation with alum, addition of lime for pH control, sedimentation, rapid sand filtration. Copper sulfate is used

at times for algae control.

Rated capacity of treatment plant: 4, 200, 000 gpd.

Raw-water storage: Earthen reservoir, 10,500,000 gal.

Finished-water storage: 1 underground reservoir, 500,000 gal; 3 above-ground storage tanks, 900,000 gal.

There is considerable variation in the composition of the raw water throughout the year.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

		<u> </u>			
	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)		16	Hardness as CaCO ₃ :		
Iron (Fe)		. 13	Total	288	290
Manganese (Mn)			Noncarbonate	158	180
Calcium (Ca)	86	88			
Magnesium (Mg)	18	17	Color		
Sodium (Na)	h	∫ 88	pH		7.4
Potassium (K)	88	7.4	Specific conductance		
Carbonate (CO ₃)	16	0	(micromhos at		
Bicarbonate (HCO ₃)	126	134	25 C.)		971
Sulfate (SO ₄)	190	212	Turbidity		
Chloride (Cl)	106	111	Temperature (F.)		
Fluoride (F)		.8	Date of collection	Aug. 7,	Aug. 7,
Nitrate (NO ₃)	2.5			1945	1945
Dissolved solids	650	634		1	ļ

	Alkalinity as CaCO _s (ppm)			рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Αv	Max	Min	Αv	Max	Min	Av	Max	Min	Á٧	Max	Min
Raw water Finished water				8.3 7.8	8. 4 7. 8		315 316	410 350	180 240	150 	230 10	120 0

MCKINNEY (Population, 10,560)

Ownership: Municipal; supplies also about 600 people outside the city limits and the Veterans Hospital. Total population supplied, about 11,200.

Source: 3 wells: well 1, Graves St; wells 5 and 6, Rockwell St. The wells are 3,360, 3,230, and 1,272 ft deep, and the yield is reported to be 868, 645, and 248 gpm.

Treatment: Aeration (cascades) and chlorination.

Rated capacity of treatment plant: --

Raw-water storage: 3 underground reservoirs: two, 200,000 gal each, and one 150,000 gal.

Finished-water storage: 1 standpipe, 235,000 gal.

The wells are pumped individually, the water being pumped into underground reservoirs. It is aerated as it enters the reservoirs and chlorinated as it is pumped from the reservoirs into the distribution system and standpipe.

ANALYSES

	Well 5 (raw water)	Well 6 (raw water)	Finished water (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	. 00	18 .08	19 . 17 . 00
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	5. 6 440	2.7 1.2 414	11 3.9 466
Carbonate (CO ₃)	0 400 371	4.4 38 620 201	2.0 0 559 340
Chloride (Cl)	205 . 9 2. 0	91 2.0 3.0	165 1.6 2.0
Dissolved solids	60	1,100	1,290 44
Color pH		<u> </u>	0 0 8, 2
Specific conductance (micromhos at 25 C.) Turbidity	2,070		2,050
Temperature (F.) Date of collection Depth (feet)	Mar. 26, 1952		84 Mar. 26, 1952
Diameter (inches) Date drilled Percent of supply	13 3/8-6 5/8 1936		
	L	L.,	

MARSHALL (Population, 22, 327)

Ownership: Municipal; supplies also about 100 persons outside the city limits. Total population supplied, about 22,400.

Source: Caddo Lake (Cypress Creek impounded). The intake is approximately 14 miles northeast of Marshall, in Grayson County. Fifteen wells previously used as municipal water supply could be used in an emergency (no pumping facilities at present at the well locations).

Treatment: Aeration (spray), prechlorination, coagulation with alum, fluoridation with sodium fluoride, activated carbon for odor and taste control, sedimentation, rapid sand filtration, postchlorination, and addition of lime for pH control

Rated capacity of treatment plant: 4,000,000 gpd.

Raw-water storage: 1 ground reservoir, 11,500,000 gal.

Finished-water storage: 2 ground steel tanks, 400,000 gal each; 3 elevated tanks, 500,000, 160,000, and 300,000 gal.

The water flows by gravity to the pumping station approximately 300 yd from the intake on Caddo Lake. The water is pumped to the ground reservoir, from which it flows by gravity to the treatment plant. The finished water flows from the treatment plant to two steel tanks, from which it is pumped to the distribution system and elevated tanks.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	15	15	Hardness as CaCO ₃ :		
Iron (Fe)	. 76	.0	Total	31	57
Manganese (Mn)	. 00	.00	Noncarbonate	18	42
Calcium (Ca)	6.9	18			
Magnesium (Mg)		3.0	Color	25	10
Sodium (Na)	17	19	pH	6.4	6.7
Potassium (K)	3.6	1.2	Specific conductance		
Carbonate (CO ₃)	0	0 1	(micromhos at		
Bicarbonate (HCO ₃)	16	18	25 C.)	168	239
Sulfate (SO ₄)	20	33	Turbidity		
Chloride (Cl)	27	34	Temperature (F.)	54	55
Fluoride (F)	. 3	1.0	Date of collection	Feb. 26,	Feb. 26,
Nitrate (NO ₃)	. 5	. 0		1952	1952
Dissolved solids	127	160			

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		48 55	8 10	7. 0 8. 6		6. 6 8. 0				; ;	 	

MERCEDES (Population, 10,081)

Ownership: Municipal; supplies also about 200 people outside the city limits. Total population supplied, about 10,300.

Source: Rio Grande. The intake is approximately 8 miles south of the city. Treatment: Aeration (trays), coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination. Activated carbon is added at times just

as water comes on filter. Copper sulfate is used at times for algae control.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: Mercedes main canal.

Finished-water storage: Underground reservoir, 500,000 gal; overhead storage, 500,000 gal.

The water is pumped from the river into a canal leading to the city treatment plant. The finished water is pumped to the distribution system and elevated storage. There is considerable variation in the composition of the raw water throughout the year.

ANALYSES

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)		13 . 09 	Hardness as CaCO ₃ : Total Noncarbonate	266 140	273 176
Calcium (Ca)	16 } 89	83 16 75 9.3	ColorpH	 	7.6
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	134 179 103	119 190 103 1.8 2.8	25 C.) Turbidity Temperature (F.) Date of collection	 Aug. 4, 1945	910 Aug. 4, 1945
Dissolved solids		602			

MIDLAND (Population, 21, 713)

Ownership: Municipal.

Source: 35 wells in 3 well fields: Cole Park Field, 14 wells, 102 to 145 ft deep, 3 miles southeast of the city limits; Rosedale Field, 9 wells, 109 to 147 ft deep, 1½ miles southeast of the city limits; Wadley Field, 12 wells, 125 to 185 ft deep

(depths for 7 wells reported), half a mile northeast of the city limits.

Treatment: Chlorination.

Rated capacity of pumping plants: 12,000,000 gpd.

Raw-water storage: 4 ground tanks, 1,000,000, 300,000 gal, and two 180,000 gal each.

Finished-water storage: 2 reservoirs, 2,225,000 and 500,000 gal; 1 elevated tank, 300,000 gal.

The wells are pumped individually. The water is pumped to ground storage tanks at the well fields. It is chlorinated as it is pumped from the storage tanks to the city into the distribution system and storage.

ANALYSES

(Initial) Deb, In p		1111011, 25 0			<u> </u>
	Cole Park		Rosedale	Wadley	Wadley
	Field	Field	Field ^a	Field	Field
	Well 1	Well 8	(composite)	Well 4	Well 8
Silica (SiO ₂)	68	67	53	74	61
Iron (Fe)	. 03	.02	.08		
Manganese (Mn)	.00	.00	- -		
Calcium (Ca)	242	151	153	78	8 3
Magnesium (Mg)	156	108	94	59	2 8
Sodium (Na)	387	211	219	1.00	7.5
Potassium (K)	10	8.4	14	126	75
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	25 5	2 35	244	208	230
Sulfate (SO_4)	814	610	540	272	97
Chloride (Cl)	698	300	344	178	135
Fluoride (F)	3.6	4.0	1.8		
Nitrate (NO _s)	28	8 . 2	15	8.2	7.5
Dissolved solids	2,790	1,680	1,550	939	65 0
Hardness as CaCO ₂ :		,			
Total	1,250	ε 20	768	437	3 22
Noncarbonate	1,040	62 8	568	2 66	134
Color	0	0			
pH	7.3	7. 5	7.4	7.8	7.9
Specific conductance	1				
(micromhos at 25 C.)	3,870	2,360		1,390	994
Turbidity	·				
Temperature (F.)	69	70			
Date of collection	Apr. 30,	Apr. 30,	Dec. 18,	Sept. 20,	Sept. 20,
	1952	1952	1946	1949 .	1949
Depth (feet)	110	147		125	148
Diameter (inches)	20	16	[123	12
Date drilled	1927	1941]	1948	1948
Percent of supply	1921	1941		1940	1546

a Wells 1, 2, 3, 4, 7, and 8.

MISSION (Population, 10,765)

Ownership: Municipal; also supplies about 750 people outside the city limits.

Total population supplied, about 11,500.

Source: Rio Grande.

Treatment: Plain sedimentation, periodic addition of copper sulfate in the sedimentation basin, aeration (cascades), prechlorination, coagulation with alum and lime, pH control, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: Sedimentation basin, 10,000,000 gal.

Finished-water storage: 2,000,000 gal.

The water is pumped from the river to the sedimentation basin, flows through the treatment plant and is pumped to the distribution system and storage. There is considerable variation in the composition of the raw water throughout the year. For more recent analyses of the Rio Grande, see Harlingen.

ANALYSES

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	 	15 . 22 	Hardness as CaCO ₃ : Total Noncarbonate	284 160	251 144
Calcium (Ca)	84 18 82 {	76 15 102 6.5	Color		7.4
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	136 183 104	131 212 . 106 . 8 2. 8	25 C.) Turbidity Temperature (F.) Date of collection	 Aug. 7, 1945	952 Aug. 7, 1945

Regular determinations at treatment play	lant :	nlan	nl	ent.	eatmer	tre	at.	minations	aetermi	emilar	R
--	--------	------	----	------	--------	-----	-----	------------------	---------	--------	---

	1009						one po					
		lkalir s CaC (ppm	O ₃	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		114 125		8.4 7.9	8. 4 8. 2		330	450 	215	240	400	70

^a January to June, 1951.

NACOGDOCHES (Population, 12, 327)

Ownership: Municipal.

Source: 4 wells, (1 to 4) 485, 484, 521, and 548 ft deep, north of town. The yield

of the wells is reported to be 536, 500, 756, and 883 gpm.

Treatment: Degasification and chlorination. Rated capacity of pumping plant: 3,300,000 gpd.

Raw-water storage: --

Finished-water storage: Ground reservoir and elevated tanks, 750,000 gal.

The wells are pumped individually into a common pipeline leading to degasifier on top of ground storage tank, chlorine is added after water leaves the degasifier and before going into storage. The water is pumped from storage to the distribution system and the elevated tanks connected to the system.

ANALYSES

,,, p, p			
	Well 1 (raw water)	Well 2 (raw water)	Well 4 (raw water)
Silica (SiO ₂)	13	12	13
Iron (Fe)	49	.41	. 71
Manganese (Mn)			.00
Calcium (Ca) ······	3.1	2.0	1.6
Magnesium (Mg)	1.0	.6	1.4
Sodium (Na)	55	53	50
Potassium (K)	4.3	3.7	.4
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	123	112	102
Sulfate (SO ₄)	22	22	21
Chloride (Cl)	9.0	9.0	7.8
Fluoride (F)	.0	. 2	. 2
Nitrate (NO ₃)	. 2	.0	1.5
Dissolved solids	172	161	152
Hardness as CaCO _s :			
Total	12	7	10
Noncarbonate	0	0	0
Color			5
рН	6.1	6. 1	6.8
Specific conductance	0.1	0,1	0.0
(micromhos at 25 C.)	275	329	240
Turbidity	210		210
Temperature (F.)			1
Date of collection		Feb. 7, 1945	Nov. 11, 1951
Depth (feet)			
Diameter (inches)	485	484	548
Date drilled		20-10	$20-12\frac{3}{4}-10\frac{3}{4}$
Percent of supply		1933	1949
Lerceur Ar subbra			I

NEW BRAUNFELS (Population, 12,210)

Ownership: Municipal.

Source: 4 wells (1 to 4) 116, 102, 110, and 160 ft deep. Wells 1 to 3 are in a group and are pumped daily. Well 4 is pumped only during the summer months. Treatment: Chlorination of supply from wells 1 to 3; no treatment of water from

well 4.

Rated capacity of pumping plant: 4,000,000 gpd.

Raw-water storage: --

Finished-water storage: 1,900,000 gal.

The water from wells 1 to 3 is chlorinated at the wells, pumped to storage tanks and then to the distribution system. The water from well 4 is pumped directly into the distribution system.

ANALYSES

	Well 1	Well 2	Finished water ^a
Silica (SiO ₂)	11	11	13
fron (Fe)	. 08	. 02	. 02
Manganese (Mn)			.00
Calcium (Ca) ······	73	73	70
Magnesium (Mg)	17	17	17
Sodium (Na)	5.1	3.9	8.8
Potassium (K)	1.6	1.6	.4
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	263	261	266
Sulfate (SO ₄)	24	24	23
Chloride (Cl)	14	13	12
Fluoride (F)		.2	.1
Nitrate (NO ₃)	5, 8	5.5	4.5
Dissolved solids	281	283	315
Hardness as CaCO _s :			
Total	252	252	244
Noncarbonate	36	38	26
Color			5
он	7, 2	7.1	7.3
Specific conductance	.,_		
(micromhos at 25 C.)	433	419	504
Furbidity			
remperature (F.)			
Date of collection	Dec. 4, 1943	Dec. 4, 1943	Nov. 30, 1951
Depth (feet)		102	
Diameter (inches)		8	
Date drilled	1941	1941	
Percent of supply		10.11	

^a Composite sample, wells 1 to 3.

ODESSA (Population, 29, 495)

Ownership: Municipal; supplies also about 2,000 persons outside the city limits. Total population supplied, about 31,500.

Source: 74 wells in one area extending from 1 mile north to 7 miles north of the city limits. The depth of the wells ranges from 120 to 207 ft and averages 164 ft. The yield of wells is reported to range from 35 to 300 gpm and averages 164 gpm.

Treatment: Chlorination.

Rated capacity of pumping plants: 19,950,000 gpd.

Raw-water storage: None.

Finished-water storage: 6 reservoirs, 440,000 gal each; 5 ground storage tanks, 500,000, 440,000, 300,000, 100,000, and 65,000 gal; 3 elevated tanks, two 500,000 gal each and one 100,000 gal.

The wells are pumped individually. The water flows from the wells to the North Pump Station, at the well field, into 6 reservoirs. It is chlorinated as it enters the reservoirs. The water is pumped from the field reservoirs to ground storage tanks in Odessa from which it is pumped into the distribution system and elevated tanks.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)										
	Well 2	Well 28	Well 44	Well 66	Finished water (city tap)					
Silica (SiO ₂)	38	32	44	37	33					
Iron (Fe)	. 10	. 15	. 05		. 05					
Manganese (Mn)					. 00					
Calcium (Ca)	132	72	66	6 8	74					
Magnesium (Mg)	34	17	14	13	12					
Sodium (Na)	81	37	25	} 27	52					
Potassium (K)	4.8	1.6	3.6	} 41	2.4					
Carbonate (CO ₃)	0	0	0	0	0					
Bicarbonate (HCO ₃)	186	214	220	229	213					
Sulfate (SO ₄)	255	72	44	46	70					
Chloride (Cl)	155	42	26	24	57					
Fluoride (F)	1.4	1.8	2.0		1.6					
Nitrate (NO ₃)	14	17	12	14	14					
Dissolved solids	877	406	364	342	442					
Hardness as CaCO ₂ :		i								
Total	470	250	222	223	234					
Noncarbonate	317	74	· 42	36	60					
Color					0					
pH	7. 5	7. 7	7. 7	8.0	7.8					
Specific conductance		•• ,	7	0.0						
(micromhos at 25 C.)	1,280	644	56 8	562	717					
Turbidity										
Temperature (F.)	(1	69		73					
Date of collection	Sept. 22,	Sept. 22,	Sept. 22,	July 8,	Apr. 29,					
	1948	1948	1948	1949	1952					
Depth (feet)	150	150								
Diameter (inches)	10	10	$16 - 1Q_{\frac{3}{4}}^{\frac{3}{4}}$	$16-10\frac{3}{4}$						
Date drilled	1944	1946	1948	1949						
Percent of supply										

ORANGE (Population, 21, 174)

Ownership: Gulf States Utilities Co.; also supplies approximately 5, 800 persons outside the city limits. Total population supplied, about 27,000.

Source: 5 wells (1, 2, 4 to 6), 687, 688, 738, 749, and 745 ft deep, within the city limits. The yield of the wells is reported to be 550, 2, 400, 750, 1,000, and 2,100 gpm.

Treatment: Chlorination and ammoniation at point of discharge of water from wells into ground reservoir.

Raw-water storage: None.

Finished-water storage: 680, 000 gal. One elevated tank, 500, 000 gal, floats on the system in form of a surge tank.

The wells are pumped by electric motors individually or in group as demand requires, the water flowing to 1 ground reservoir, from which it is pumped into the distribution system. Analyses made by the State Board of Health Laboratories show very small variation in the chemical composition of the water over a period of the last 25 years.

ANALYSES

	Well 5 (raw water)	Finished water		Well 5 (raw water)	Finished water
Silica (SiO ₂)	48	42	Hardness as CaCO ₃ :		
Iron (Fe)		. 39	Total	30	28
Manganese (Mn)		. 00	Noncarbonate	0	0
Calcium (Ca)	8.6	7.0			
Magnesium (Mg)	2.0	2.5	Color ·····		15
Sodium (Na)	105	/ 108	pH		7.3
Potassium (K)	7.09	8. /	Specific conductance		532
Carbonate (CO _s)	0	0	(micromhos at		
Bicarbonate (HCO _s)	198	193	25 C.)		
Sulfate (SO ₄)	1.6	.5	Turbidity		
Chloride (Cl)	67	71	Temperature (F.)		
Fluoride (F)		.4	Date of collection	Apr. 12,	Nov. 27.
Nitrate (NO.)		1.5		1941	1951
Dissolved solids	335	334			
Depth (feet)				749	
				$16-8\frac{1}{2}$	
Date drilled		•••••		1941	

PALESTINE (Population, 12,503)

Ownership: Municipal.

Source: 2 wells (1 and 2) 1,617 and 1,600 ft deep, at the auxiliary or emergency supply treatment plant about $1\frac{1}{2}$ miles west of the Municipal Building, 100 percent of the supply except in emergencies. Auxiliary or emergency supply from Water Works Lake and Upper Lake on Sabine (Wolf) Creek at the treatment plant.

Treatment: Wells: chlorination; surface water: aeration, prechlorination, coagulation with sodium aluminate, activated carbon, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: 2 ground reservoirs, 246,000 gal, each.

Finished-water storage: 1 ground reservoir, 547,000 gal; 1 elevated tank, 300,000 gal; clear well, 175,000 gal.

The wells are pumped individually into the clear well, from which the water is pumped, being chlorinated as it leaves the clear well, to the city and distribution system and elevated tanks. The auxiliary supply is pumped to the treatment plant. The finished water from the plant is pumped into the same line with the well water leading to the city. The auxiliary supply was used in 1951 for the first time in many years.

ANALYSES

, y p p			
	Well 1 (raw water)	Well 2 (raw water)	·Finished water
Silica (SiO ₂)	20	20	19
Iron (Fe)	. 02	. 06	. 02
Manganese (Mn)			.00
Calcium (Ca) ·····	3.4	3.6	1.8
Magnesium (Mg)	. 8	.7	.7
Sodium (Na)	72	56	79
Potassium (K)	1.7	1.8	2.0
Carbonate (CO ₃)		11	0
Bicarbonate (HCO ₃)	175	129	201
Sulfate (SO ₄)		5. 2	6.3
Chloride (Cl)	5.0	3.0	6.5
Fluoride (F)		. 2	.0
Nitrate (NO ₃)	.0	. 8	.0
Dissolved solids	217	170	215
Hardness as CaCO _s :			
Total	12	12	7
Noncarbonate	0	0	0
Color			20
рН		0 1	
Specific conductance	8. 2	8. 1	8.0
(micromhos at 25 C.)	332	260	334
Turbidity		200	334
Temperature (F.)	89	88	86
Date of collection		June 14, 1944	
			, , , , , , , , , , , , , , , , , , ,
Depth (feet)	1,01.	1,600	
Diameter (inches)	-4 - ,70	16-8	
Date drilled		1940	
Percent of supply			

PAMPA (Population, 16,583)

Ownership: Municipal.

Source: 8 wells: 5 wells (1 to 5-south), 450, 450, 411, 412, and 411 ft deep, south of city; 3 wells (1-north, 3-north, and 4-north), 395, 412, and 414 ft deep, north of the city.

Treatment: Chlorination.

Raw-water storage: 630,000 gal.

Finished-water storage: 3,570,000 gal ground storage; 525,000 gal overhead

storage.

The wells are pumped individually to 2 central collecting points, 1 north of the city and the other south. The water is chlorinated, and pumped by booster pumps into the distribution system and storage.

ANALYSES

	F		,, Basis		
	Raw water ^a	Finished water ^b		Raw water ^a	Finished water ^b
Silica (SiO ₂)	12	31	Hardness as CaCO ₃ :		
Iron (Fe)	. 16	. 16	Total	258	196
Manganese (Mn)			Noncarbonate	70	l 0
Calcium (Ca)	59	42			
Magnesium (Mg)	27	22	Color		
Sodium (Na)	117	30	рН	7.4	7.8
Potassium (K)	12	2.8	Specific conductance		
Carbonate (CO ₃)	0	o	(micromhos at		
Bicarbonate (HCO)	230	254	25 C.)	1,060	526
Sulfate (SO ₄)	141	21	Turbidity		
Chloride (Cl)		26	Temperature (F.)		
Fluoride (F)	1.2	. 9	Date of collection	Nov. 20,	June 6,
Nitrate (NO ₃)	4.0	4.8		1947	1951
Dissolved solids	638	293	`	1	

^aComposite sample wells 1 and 2-south and wells 1, 3, and 4-north. bComposite sample wells 3, 4, and 5-south.

PARIS (Population, 21,643)

Ownership: Municipal; supplies also about 300 persons outside the city limits. Total population supplied, about 21, 900.

Source: Pine Creek impounded in Lake Crook, about 4 miles north of Paris. Auxiliary or emergency supply, Lake Gibbons on Pine Creek, about 5 miles upstream from Lake Crook.

Treatment: Prechlorination, aeration (cascades), coagulation with alum, sedimentation, rapid sand filtration, postchlorination, and addition of lime for pH control. Use of activated carbon at times for odor and taste control.

Rated capacity of treatment plant: City treatment plant (formerly Camp Maxie), 4,000,000 gpd; Old treatment plant, 3,200,000 gpd.

Raw-water storage: Lake Crook, capacity, 3,519,000,000 gal.

Finished-water storage: 2 underground reservoirs, 600,000 and 300,000 gal; 1 elevated tank, 500,000 gal; 1 standpipe, 300,000 gal.

Since 1948, when the city acquired the treatment plant at Camp Maxie, only that treatment plant has been in use.

The water flows by gravity from the lake, intake at dam of Lake Crook approximately 500 ft from the treatment plant, to the treatment plant. The finished water from the plant is pumped into 2 underground storage tanks, from which it is pumped into town, into the distribution system and elevated tanks.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)		2.2	Hardness as CaCO ₃ :		
Iron (Fe)		05	Total	43	83
Manganese (Mn)	. 00	.00	Noncarbonate	10	46
Calcium (Ca)	13	30			
Magnesium (Mg)	2.6	1.9	Color	60	0
Sodium (Na)	8.7	5.2	рН	6.8	7.5
Potassium (K)	1.6	2.4	Specific conductance		
Carbonate (CO ₃)	o	0	(micromhos at		
Bicarbonate (HCO.)	41	45	25 C.)	115	219
Sulfate (SO ₄)		48	Turbidity		
Chloride (Cl)	4.0	6.8	Temperature (F.)	57	55
Fluoride (F)		.3	Date of collection	Mar. 25.	Mar. 25,
Nitrate (NO.)	1 0	.5		1952	1952
Dissolved solids	a ₇₇	140			

	Alkalinity as CaCO ₃ (ppm)			pН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	23 36	25 40	22 33	7.3 7.9			43 81	44 84	41 80	85 . 5	190 . 5	50 . 5

^aSum of determined constituents.

PASADENA (Population, 22,483)

Ownership: Municipal; also supplies approximately 100 persons outside the city

limits. Total population supplied, about 22,600.

Source: 5 wells (4 to 8), 1, 203, 580, 1, 565, 1, 264, and 1, 262 ft deep.

Treatment: Chlorination at the wells.

Raw-water storage: None.

Finished-water storage: Ground reservoir and elevated tank, 2,000,000 gal.

The wells are pumped individually into ground storage tanks. From the storage tanks the water is pumped into the distribution system. Overhead storage tanks, used also in controlling pressure, are "floated" on the distribution system.

ANALYSES

	Well 4 ^a	Well 8ª		Well 4 ^a	Well 8ª
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	.32	18 .01 .00	Hardness as CaCO ₃ : Total Noncarbonate	21 0	39 0
Calcium (Ca)	1.3 134 28 240 11 40 .8 .0	11 2.8 /121 1.6 0 276 12 46 .6 .2	Color	595 Sept. 10,	7. 9 576 Nov. 20, 1951
Depth (feet)	1,203 18 ³ / ₄ -11 ³ / ₄ 1943	1, 262 12-8 1950			

a Raw water.

PLAINVIEW (Population, 14,044)

Ownership: Municipal; supplies also about 500 persons outside the city limits. Total population supplied, about 14,500.

Source: 5 wells (1 to 5), within the city limits. Wells 1 to 3 are each 301 ft deep; well 5, 305 ft; depth not reported for well 4.

Treatment: None.

Storage: Ground storage reservoir, 750,000 gal; 3 elevated storage tanks, 500,000 gal.

The wells are pumped individually and directly into the ground reservoir and elevated tanks from which the water is distributed.

ANALYSES

		7	,		
	Well 1	Well 5		Well 1	Well 5
Silica (SiO ₂) Iron (Fe)	60 . 0	60 . 0	Hardness as CaCO ₃ : Total	262	235
Manganese (Mn)		. 00	Noncarbonate	0	0
Calcium (Ca) Magnesium (Mg)		38 34	Color		
Sodium (Na) Potassium (K)		45	pH	7.4	7.8
Carbonate (CO ₃)	8.5 0	4.0	Specific conductance (micromhos at		ļ
Bicarbonate (HCO ₃)	32 9	335	_ 25 C.)	594	622
Sulfate (SO ₄)	28 18	26 22	Turbidity Temperature (F,)	64	64
Fluoride (F)	3.6	·2.8	Date of collection	Feb. 28,	Nov13,
Nitrate (NO ₃) Dissolved solids	1.2 379	2.5 394		1945	1951
				301	305
Diameter (inches)	18	16			
Date drilled	1937	1948			
Percent of supply					

PORT ARTHUR (Population, 57,530)

Ownership: Municipal; supplies also approximately 10,000 persons outside the city limits, in addition to the towns of Griffing Park, Lakeview, Pear Ridge, and Sabine Pass. Total population supplied, about 75,100.

Source: Neches River. The intake is about 15 miles upstream from Beaumont, Jefferson County, and the water is diverted by open canal to the treatment plant.

Treatment: Coagulation with alum, followed by addition of lime and soda ash for corrosion control, chlorination, sedimentation, and rapid sand filtration.

Rated capacity of treatment plant: 11,000,000 gpd.

Raw-water storage: Earthen reservoir, 200,000,000 gal.

Finished-water storage: Ground reservoir and elevated tanks, 4, 100, 000 gal.

There is some variation in the composition of the raw water throughout the year. For raw water analyses of Neches River, see Beaumont.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (city tap)		Finished water (city tap)
Silica (SiO ₂)	13 _. 1.1	Hardness as CaCO ₃ :	4.5
Manganese (Mn)	.00	Noncarbonate	45 0
Calcium (Ca)	10 4.9	Color	10
Sodium (Na)	55	pHSpecific conductance	7.3
Potassium (K) Carbonate (CO ₃)	1.2	(micromhos at	
Bicarbonate (HCO _s)	70	25 C.)	348
Sulfate (SO_4)	44	Turbidity Temperature (F.)	
Fluoride (F)	44	Date of collection	Non 20
Nitrate (NO ₃)	. 2		Nov. 28, 1951
Dissolved solids	211		

	-											
	as	kalini s CaC (ppm)	O ₃		рН		as	rdnes CaC((ppm)		Т	urbid	ity
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	20 45	30 60	10 35		1	6.0 8.0	45 50	51 60	35 40	20 2	200 2	10 2

SAN ANGELO (Population, 52,093)

Ownership: Municipal; supplies also Goodfellow Air Force Base.

Source: Lake Nasworthy on South Concho River, 6 miles southwest of the City Hall. Treatment: Prechlorination, coagulation with alum, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 12,500,000 gpd.

Raw-water storage: Lake Nasworthy, capacity 3,584,360,000 gal.

Finished-water storage: 2 elevated tanks, 250,000 gal each; 1 ground reservoir, 650,000 gal; clear wells, 5,500,000 gal.

The water is released from Lake Nasworthy and flows down the Concho River to the treatment plant in San Angelo. The finished water from the plant is pumped into the distribution system and storage.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	. 37	13 . 10	Hardness as CaCO ₃ : Total Noncarbonate	219 32	200 46
Calcium (Ca)	20 43 7.0	$\begin{cases} 49 \\ 19 \\ 64 \\ 0 \end{cases}$	Color	7.5	7.6
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	228 29 74	188 36 104 .3	25 C.) Turbidity Temperature (F.) Date of collection	626 Aug. 18,	629 Oct. 17,
Nitrate (NO ₃) Dissolved solids		. 5 350		1947	1951

	as	kalini CaC (ppm)	O¸		рĤ		as	rdnes CaCC ppm)		Т	urbidi	ty
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water			156 132	8. 2 7. 9	8.5 8.1	7.8 7.0	230	266	1 9 0	9 .8	50 1.0	5 . 5

SAN ANTONIO (Population, 408,442)

Ownership: Municipal; supplies also Alamo Heights, Olmos Park, Terrell Hills, and Brooks Air Force Base. Total population supplied, about 420,000.

Source: 66 wells: 41 wells in 6 well fields, and 25 wells at various points throughout the city. Well stations (Fields): Brackenridge, 13 wells, 900 ft deep (average); Market Street, 12 wells, 880 to 936 ft deep; Mission, 10 wells, 1,400 ft deep (average); and the following stations: Artesia Road, Lady of the Lake Garden, and Woodlawn Hills, 2 wells each. The depth of the wells at the last named stations and the remaining wells ranges from 600 to 1,333 ft.

Treatment: Chlorination at the major stations and some of the scattered outlying stations. The outlying stations that are not chlorinated are pumped only when the demand requires.

Rated capacity of pumping plants: 247, 500, 000 gpd.

Raw-water storage: None.

Finished-water storage: 7 elevated tanks, one 2,500,000 gal, one 1,500,000 gal, two 1,000,000 gal each, one 250,000 gal, one 80,000 gal, and one 50,000 gal; standpipe, 37,500 gal.

The wells at the Market Street, Brackenridge, Mission, and Artesia Road stations pump as a unit; all other wells are pumped individually. The water is pumped directly into the distribution system and storage. The Artesia Road, Market Street, and Mission stations serve the southern part of the city. The Brackenridge station and most of the scattered outlying wells serve the northern part of the city.

ANALYSES

(Analyses, 14 p	arts per m	minon, by c	. S. Georg	RICAL DULAG	· y)
	Market St.	Mission	Artesia	Basse	Bracken-
	Station		Rd. Station		ridge, 13
	well	well 9	well	well	wells a
Silica (SiO ₂)	16	17	24	16	14
Iron (Fe)	. 25	. 01	.00	.00	.00
Manganese (Mn)		.00			.00
Calcium (Ca)	59	65	50	50	62
Magnesium (Mg)	17	19	14	1.7	17
Sodium (Na)	1	10	13	5.2	7.1
Potassium (K)	6.8	1.6	.4	.8	1.2
Carbonate (CO ₃)	12	0	0	0	0
Bicarbonate (HCO ₃)	208	238	176	190	244
Sulfate (SO_4)	22	35	35	32	15
Chloride (Cl)	12	18	19	13	12
Fluoride (F)	.1	.3	.4	.3	. 2
Nitrate (NO _s)	1.8	5.0	2.5	3.5	5.4
Dissolved solids	263	296	244	246	259
Hardness as CaCO ₃ :		ĺ			
Total	217	240	182	195	225
Noncarbonate	27	45	3 8	39	25
Color		0			0
pH	8.3	7.6	7.9	7. 8	7.6
Specific conductance	0.0	1.0	1.0	'."	1.0
(micromhos at 25 C.)	465	498	425	490	449
Turbidity	1 200	100	125	150	0
Temperature (F.)	1	81			78
Date of collection	June 14.	May 14,	Dec. 13.	June 21.	May 14,
	1948	1952	1948	1950	1952
Depth (feet)			800	772	Avg. 900
Diameter (inches)		1,400	800	16	
Date drilled				1950	16, 12, 8 1916-33
Percent of supply				1930	1910-99

a Finished water.

SAN ANTONIO--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Market St. Station 12 wells	Wells b		Market St. Station 12 wells	Wells b
Silica (SiO ₂)	.01	. 01 . 00	Hardness as CaCO ₃ : Total Noncarbonate	225 23	223 26
Calcium (Ca)	17 7.4 .8	63 16 7.9 2.0	Color	7.7	0 7. 5
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	246 14 12	0 240 17 14	25 C.)	450 0 77 May 14,	453 Mar. 14,
Nitrate (NO ₃) Dissolved solids	5.2	3.0 268		1952	1952

b Composite sample, Market Street, Mission Park, and Artesia well fields.

SAN BENITO (Population, 13,271)

Ownership: Municipal; supplies also about 400 people outside the city limits. Total population supplied, about 13,700.

Source: Rio Grande. Connecting canal to San Benito; 3 wells, (developed 1952-53). Treatment: Prechlorination, aeration (spray), coagulation with alum and lime,

pH control, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 2,250,000 gpd.

Raw-water storage: Raw water storage in Resaca de los Fresnos.

Finished-water storage: Clear wells 450,000 gal; elevated, 650,000 gal.

There is considerable variation in the composition of the raw water throughout the year.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

(Lames) in put	Finished water	, by C. S. Georgical Surve	Finished water
Silica (SiO ₂)	10 . 02	Hardness as CaCO ₃ : Total Noncarbonate	248 155
Calcium (Ca)	65 21 101 4.0	Color	7. 7
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 114 164 132 . 5	(micromhos at 25 C.)	955 June 7, 1951
Dissolved solids	552		

	as	kalin s CaC (ppm)	O _s	рН			Hardness as CaCO ₃ (ppm)			Turbidity		
	Av	Max	Min	Av	Max	Min	Αv	Мах	Min	Αv	Max	Min
Raw water Finished water		137 125	_	8.0 7.8		7. 9 7. 6				134	183	112

SHERMAN (Population, 20, 150)

Ownership: Municipal; supplies also about 3,500 persons outside the city limits. Total population supplied, about 23,650.

Source: 11 wells: 7 wells (1 to 4, 6 to 8), on West Birge Street; 2 wells (3 and 9), on West McGee Street, in the northwest section of Sherman; 2 wells, on South East Street, in southeast section of Sherman. Seven of the wells range in depth from 708 to 912 ft; four, from 2, 140 to 2, 257 ft. The yield of the wells (data for 8 wells) is reported to range from 175 to 543 gpm.

Treatment: Chlorination.

Raw-water storage: 2 underground reservoirs, 1,400,000 and 50,000 gal. Finished-water storage: 1 underground reservoir, 50,000 gal; 1 elevated tank, 750,000 gal; 1 standpipe, 300,000 gal.

The wells are pumped individually into the underground reservoirs, from which the water is pumped into the distribution system and storage, being chlorinated as it leaves the reservoirs. The wells in the northwest section, Fairview Pump Station, Woodbine wells 3, 4, 6, 7, 8, and 9, and Fairview Pump Station Trinity wells 1, 2, and 3 are pumped into a 1,400,000 gal reservoir. The water from the wells in the southeast section, South Plant Woodbine well 1, and South Plant Trinity well 1, is pumped into a 50,000 gal reservoir.

ANALYSES

Silica (SiO ₂) 16 16 14 Iron (Fe) .01 .01 .16 Manganese (Mn) .00 .00 .00 Calcium (Ca) 2.6 2.8 .2 Magnesium (Mg) 1.2 1.8 .5 Sodium (Na) 337 365 109 Potassium (K) 8 2.0 Carbonate (CO ₂) 0 0 0 0 Bicarbonate (HCO ₃) 461 468 248 Sulfate (SO ₄) 110 107 21 Chloride (Cl) 168 215 8.8 Fluoride (F) 6 .7 .6 Nitrate (NO ₂) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Spec		Trinity well 1 (raw water) ^a	Trinity well 3 (raw water) ^a	Woodbine well 9 (raw water) ^a
Manganese (Mn)	Silica (SiO ₂)	16	16	14
Manganese (Mn) .00 .00 .00 Calcium (Ca) 2.6 2.8 .2 Magnesium (Mg) 1.2 1.8 .5 Sodium (Na) 337 365 109 Potassium (K) .8 2.0 Carbonate (CO ₂) 0 0 0 0 Bicarbonate (HCO ₃) 461 468 248 Sulfate (SO ₄) 110 107 21 Chloride (Cl) 168 215 8.8 Fluoride (F) 6 7 6 Nitrate (NO ₃) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91	ron (re)	01		
Calcium (Ca) 2.6 2.8 .2 Magnesium (Mg) 1.2 1.8 .5 Sodium (Na) 337 365 109 Potassium (K) .8 2.0 Carbonate (CO ₂) 0 0 0 Bicarbonate (HCO ₃) 461 468 248 Sulfate (SO ₄) 110 107 21 Chloride (CI) 168 215 8.8 Fluoride (F) .6 .7 .6 Nitrate (NO ₃) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952<		00		
Magnesium (Mg)		2.6	1	
Sodium (Na) 337 365 109 Fotassium (K) .8 2.0 Carbonate (CO ₂) 0 0 0 Bicarbonate (HCO ₃) 461 468 248 Sulfate (SO ₄) 110 107 21 Chloride (CI) 168 215 8.8 Fluoride (F) .6 .7 .6 Nitrate (NO ₃) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952		1 2		
Potassium (K) .8 2.0 Carbonate (CO ₂) 0 0 0 Bicarbonate (HCO ₃) 461 468 248 Sulfate (SO ₄) 110 107 21 Chloride (CI) 168 215 8.8 Fluoride (F) 6 7 6 Nitrate (NO ₂) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Sodium (Na)	337		
Carbonate (CO ₃) 0 0 0 Bicarbonate (HCO ₃) 461 468 248 Sulfate (SO ₄) 110 107 21 Chloride (Cl) 168 215 8.8 Fluoride (F) .6 .7 .6 Nitrate (NO ₃) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Potassium (K)			
Bicarbonate (HCO ₃) 461 468 248 Sulfate (SO ₄) 110 107 21 Chloride (Cl) 168 215 8.8 Fluoride (F) 6 7 6 Nitrate (NO ₃) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Carbonate (CO ₂)	Λ	0	
Sulfate (SO). 110 107 21 Chloride (Cl) 168 215 8.8 Fluoride (F). 6 .7 .6 Nitrate (NO ₂) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Bicarbonate (HCO ₂)	461	_	1
Chloride (Cl) 168 215 8.8 Fluoride (F) .6 .7 .6 Nitrate (NO ₃) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Sulfate (SO ₄)			
Fluoride (F)				
Nitrate (NO ₃) 1.2 1.8 1.0 Dissolved solids 859 942 284 Hardness as CaCO ₃ : 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Fluoride (F)	6		
Dissolved solids 859 942 284 Hardness as CaCO3: 12 14 3 Noncarbonate 0 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance 3 8.3 7.8 Color 1,450 1,610 459 Turbidity	Nitrate (NO ₃)	1 9		
Hardness as CaCO ₃ : Total 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity	Dissolved solids			
Total 12 14 3 Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Hardness as CaCO _s :	000	012	201
Noncarbonate 0 0 0 Color 5 5 5 pH 8.3 8.3 7.8 Specific conductance (micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Total	12	14	۹ ا
pH	Noncarbonate			
pH				
Specific conductance (micromhos at 25 C.)		5	5	5
(micromhos at 25 C.) 1,450 1,610 459 Turbidity Temperature (F.) 91 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952		8.3	8.3	7.8
Turbidity				
Temperature (F.) 91 91 78 Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952		1,450	1,610	459
Date of collection Feb. 15, 1952 Feb. 15, 1952 Feb. 15, 1952	Turbidity			
	Temperature (F.)	91	91	78
Depth (feet) 2,140 2,169 912	Date of collection	Feb. 15, 1952	Feb. 15, 1952	Feb. 15, 1952
	Depth (feet)	2,140	2,169	912
Diameter (inches)	Diameter (inches)	10-8		
Date drilled	Date drilled	1921		1949
Percent of supply				

^aFairview Pump Station.

SNYDER (Population, 12,010)

Ownership: Municipal; supplies also about 700 people outside the city limits. Total population supplied, about 12,700.

Source: 24 wells. 16 wells are at various points within the city limits; 4 wells, about 6 blocks north of the city limits; and 4 wells, about 6 blocks south of the city limits. The depth of the wells ranges from 164 to 315 ft, and averages 220 ft.

Treatment: None.

Storage: 3 elevated tanks, 100,000 gal each; 3 ground reservoirs, 500,000, 300,000, and 150,000 gal.

The wells are pumped individually. The water from wells 3, 4, 14, and 19 to 26 is pumped directly into the distribution system; the water from wells 1, 2, 11 to 13, 15 to 18, and 27 to 30 is pumped into storage from which it is pumped into the distribution system.

ANALYSES

(*************************************	million, by C.	D. GCOTOBIOM D	
	Well 1	Well 2	Well 4
Silica (SiO ₂)	27	27	28
Iron (Fe)	. 04	. 05	. 03
Manganese (Mn)	.01		.00
Calcium (Ca) ·····	60	79	48
Magnesium (Mg)	23	28	18
Sodium (Na)	45	49	44
Potassium (K)	5.0	4.8	2.8
Carbonate (CO ₃)		0	0
Bicarbonate (HCO ₃)	308	316	284
Sulfate (SO ₄)	32	51	22
Chloride (Cl)	34	66	18
Fluoride (F)	1.6	1.6	1.6
Nitrate (NO ₃)	12	20	5.0
Dissolved solids	391	496	335
Hardness as CaCO ₃ :			
Total	244	312	194
Noncarbonate	0	53	0
0-1			
Color			. 0
pH	7.5	7. 5	7.6
Specific conductance			
(micromhos at 25 C.)	661	835	561
Turbidity Temperature (F.)			
		77	69
Date of collection		May 29, 1946	May 1, 1952
Depth (feet)	165	165	205
Diameter (inches)	17	17	17-12
Date drilled	1925	1926	1945
Percent of supply			

SWEETWATER (Population, 13,619)

Ownership: Municipal; also supplies Robe, Longworth, and about 500 persons outside the city limits. Total population supplied, about 15, 300.

Source: Lake Sweetwater on Bitter Creek, about 8 miles southeast of the city, twothirds of the supply; Lake Trammel on Sweetwater Creek, about 8 miles southwest of the city, one-third of the supply.

Treatment: Prechlorination, aeration (cascades), coagulation with alum, sedimentation, rapid sand filtration, postchlorination, and fluoridation with sodium fluo-

ride.

Rated capacity of treatment plant: 3,000,000 gpd.

Raw-water storage: Lake Sweetwater, capacity 4,500,000,000 gal; Lake Trammel, capacity 1,800,000,000 gal.

Finished-water storage: 1 elevated tank, 750,000 gal; 1 standpipe, 280,000 gal; clear well, 250,000 gal.

The water from Lake Sweetwater is pumped to the treatment plant; that from Lake Trammel flows by gravity to the treatment plant. The finished water from the plant is pumped into the distribution system and elevated storage.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(maryses, in parts pe	i milition, by 0. S. Geological balvey)						
	Lake Trammel (raw water)	Lake Sweetwater (raw water)	Finished water (composite)				
Silica (SiO ₂)		3.0	7. 2				
Iron (Fe)	. 05	.07	.05				
Manganese (Mn)		.00	.00				
Calcium (Ca) ·····		59	64				
Magnesium (Mg)		13	14				
Sodium (Na)	0.0	f 13	14				
Sodium (Na) Potassium (K)	7.8	3.6	3.6				
Carbonate (CO ₃)	ه ۲	0	0				
Bicarbonate (HCO ₃)		197	224				
Sulfate (SO ₄)	16	41	36				
Chloride (Cl)	16	20	17				
Fluoride (F)	.0	.0	. 9				
Nitrate (NO ₃)	1.0	.0	.5				
Dissolved solids	193	270	278				
Hardness as CaCO ₃ :	100	210	210				
Total	158	201	217				
Noncarbonate		39	34				
Holical bollate	20	33	34				
Color		10	10				
pH	7.6	7. 7	7.6				
Specific conductance		' ' '	1.0				
(micromhos at 25 C.)	338	453	472				
Turbidity		100	414				
Temperature (F.)							
Date of collection		Jan. 18, 1952	Jan. 18, 1952				
	002, 2, 1010	Jul. 10, 1002	Jan. 10, 1332				

	Alkalinity as CaCO ₃ (ppm)				рН		as	rdnes CaCC opm)		T	urbidi	ty
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		185 180			8.0 8.0			220 220		25 . 0	1000 . 0	

TEMPLE (Population, 25, 467)

Ownership: Municipal; supplies also about 400 persons outside the city limits and McCloskey Hospital. Total population supplied, about 27,500.

Source: Lake on Leon River, below highway bridge on U. S. Highway 81; and 5 wells (1 to 5), 1,238, 1,260, 1,268, 2,136, and 1,460 ft deep. Wells 1, 2, and 3 are at the treatment plant; well 4 on Nugent Avenue, and well 5 at the city airport. The yield of the wells is reported to be 900, 900, 900, 1,000, and 150 gpm.

Treatment: Surface water and water from wells 1, 2, and 3: prechlorination, coagulation with alum and lime, sedimentation, rapid sand filtration, postchlorination, and fluoridation with sodium fluoride. Water from well 4: aeration and chlorination. Water from well 5: chlorination.

Rated capacity of treatment plant: 7,000,000 gpd.

Raw-water storage: Lake, capacity 300, 110, 000 gal. Finished-water storage: 2 underground reservoirs, 8,000,000 and 25,000 gal; 2 elevated tanks, 500,000 gal each.

The water from the lake and wells 1, 2, and 3 is pumped to the treatment plant. The finished water from the plant is pumped approximately 6 miles to the city to the underground reservoir, from which it is pumped into the distribution system and elevated tanks. The water from well 4 is pumped into an underground reservoir, being aerated as it enters the reservoir and chlorinated as it is pumped from the reservoir into the distribution system. Well 5 is a separate unit supplying only the city airport.

ANALYSES

(Commy Doby 222 Peer en po	i million, by or	0, 0	
	Lake (raw water)	Well 2 (raw water)	Lake (finished water)
Silica (SiO ₂)	12	14	8, 8
Iron (Fe)		, 01	.02
Manganese (Mn)		.00	.00
Calcium (Ca)		6.8	12
Magnesium (Mg)	12	4.0	5.2
Sodium (Na)	181	438	48
Potassium (K)	4.4	.4	1.2
Carbonate (CO ₃)		0	6
Bicarbonate (HCO)		442	34
Sulfate (SO ₄)	79	221	46
Chloride (Cl)	162	268	50
Fluoride (F)		2. 2	.3
Nitrate (NO ₃)		3.5	1.0
Dissolved solids		1, 180	197
Hardness as CaCO ₃ :		-,	-7.
Total	167	34	51
Noncarbonate	0	0	14
Color		0	5
рН	8.0	8.0	9.0
Specific conductance	0.0	0.0	9.0
(micromhos at 25 C.)		1 070	348
Turbidity		1,970	340
Temperature (F.)		86	
Date of collection			Oct. 22, 1951

TERRELL (Population, 11,544)

Ownership: Municipal; supplies also about 80 people outside the city limits. Total population supplied, about 11,600.

Source: Impounding reservoir on a creek about 2 miles east of the city.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, and chlorination. Addition of copper sulfate during summer months for algae control.

Rated capacity of treatment plant: 1,000,000 gpd.

Raw-water storage: Impounding reservoir.

Finished-water storage: 1 elevated tank, 285,000 gal; 1 ground reservoir, 160,000 gal; clear well, 30,000 gal.

The water is pumped from the lake to the treatment plant about 100 yards from lake. The finished water is pumped into the distribution system and elevated tank.

A new treatment plant of 1,000,000 gpd capacity adjacent to the plant in use is expected to be put in operation in the latter part of 1952. Treatment at both plants will be the same.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Raw water	Finished water
Silica (SiO ₂)	13	7.6	3, 4
Iron (Fe)		.03	.05
Manganese (Mn)		.00	.00
Calcium (Ca) ······	16	19	28
Magnesium (Mg)		5. 2	4.7
Sodium (Na)		13	16
Potassium (K)	3.6		2.0
Carbonate (CO.)	0.0	0	0
Carbonate (CO ₃) Bicarbonate (HCO ₃)	63	87	93
Sulfate (SO ₄)	10	15	37
Chloride (Cl)		7.2	8. 2
Fluoride (F)	. 4	.4	:3
Nitrate (NO ₃)	. 8	$\frac{1}{2}$.0
Dissolved solids	92	125	155
Hardness as CaCO ₃ :		1	1
Total	56	69	89
Noncarbonate	4	0	13
Color		10	10
рН		7.6	8. 1
Specific conductance			
(micromhos at 25 C.)	132	200	253
Turbidity		50	
Temperature (F.)		50	56
Date of collection	July 30, 1943	Mar. 24, 1952	Mar. 24, 1952

	as	kalini CaC((ppm)	O ₃		рН			rdnes CaCC ppm)	-	Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
·Raw water Finished water		90 95		7.8 8.3	7.8 8.4	7.6 7.6						

TEXARKANA (Population, 40,628; 24,753 in Texas)

Ownership: Municipal; supplies also suburban areas. Total population supplied, about 42, 628.

Source: 3 well fields and 1 impounding reservoir: Arkansas Station, 22 wells ranging in depth from 40 ft to 50 ft; Texas Station, 12 wells ranging in depth from 40 ft to 50 ft; Bringle Station (used for emergency), 6 wells each about 37 ft deep; and Bringle Lake (Clear Creek impounded).

Treatment: Wells: aeration, alkali for adjustment of pH, and chlorination. Lake: prechlorination, coagulation with lime and alum, sedimentation, rapid sand filtration, postchlorination, and carbonation at times.

Rated capacity of treatment plant: 3,075,000 gpd.

Raw-water storage: --

Finished-water storage: 4,000,000 gal.

The Arkansas Station well field is near East 9th St. and Jefferson Ave.; Texas Station is about 1 mile west of Texarkana; Bringle Station, 6 miles northwest of Texarkana; and the impounding reservoir, at Bringle Station well field.

ANALYSES

	Bringle	Arkansas	Station	Texas	Bringle
	Lakea	(raw	(finished	Stationb	Station ^b
		water)	water)		
Silica (SiO ₂)	5.1	38	36	26	36
Iron (Fe)	. 03	. 48	. 19		. 11
Manganese (Mn)		.05	.01		
Calcium (Ca)	9.3	7.6	17	2.4	16
Magnesium (Mg)	2.7	5.1	5.6	1.2	4.4
Sodium (Na)	5 . 5	19	20	7.4	19
Potassium (K)	4.2	2.5	2.6	2.5	2. 8
Carbonate (CO ₂)	. 0	0	16	0	0
Bicarbonate (HCO ₃)	34	31	18	10	55
Sulfate (SO ₄)	3.0	5.6	5.7	3.0	2.0
Chloride (Cl)	14	33	36	8.0	37
Fluoride (F)	.2	. 1	. 1	.0	. 2
Nitrate (NO ₃)	. 5	12	13	9.4	2.5
Dissolved solids	68	151	176	71	149
Hardness as CaCO ₃ :					
Total	34	40	65	11	58
Noncarbonate	6	14	24	3	13
Color		5	8		
Color		-			6.6
рН	6.6	5.8	9. 1	5.0	0.0
Specific conductance		100	005	64.0	990
(micromhos at 25 C.)	115	199	235	64.0	2 20
Turbidity		2	4		
Temperature (F.)		66	65		G 4 00
Date of collection	Sept. 22,	Dec. 4,	Dec. 4,	Sept. 22,	Sept. 22,
	1943	1951	19 51	1943	1943

^aRaw water.

^bFinished water.

TEXAS CITY (Population, 16,620)

Ownership: Community Public Service Co.

Source: 5 wells (3 to 7), 783, 772, 764, 778, and 763 ft deep, in the city. The yield of the wells is reported to be 190, 440, 500, 350, and 500 gpm.

Treatment: Chlorination.

Raw-water storage: 1 underground reservoir, 620,000 gal.

Finished-water storage: 2 elevated tanks, 250,000 and 100,000 gal.

The wells are pumped individually into connecting lines to the reservoir at the pumping plant. The water is pumped from the reservoir to the distribution system and elevated tanks, being chlorinated immediately before entering the distribution system.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

(IIIIII) DCD,		per milli	on, by o. o. deologica	I Dul Vcy/	
	Well 6 (raw water)	Finished water ^a		Well 6 (raw water)	Finished water ^a
Silica (SiO ₂)		16	Hardness as CaCO ₃ :		
Iron (Fe)		. 19	Total	33	24
Manganese (Mn)		. 00	Noncarbonate	0	0
Calcium (Ca)	8.0	5.9			
Magnesium (Mg)	3.1	2,3	Color		10
Sodium (Na)	1	₹307	pH	7.8	7.5
Potassium (K)	310	.4	Specific conductance		
Carbonate (CO.)	٥	0	(micromhos at		
Bicarbonate (HCO.)	366	463	25 C.)	1,460	1,370
Sulfate (SO ₄)	2.0	. 1	Turbidity		
Chloride (Cl)		219	Temperature (F.)		
Fluoride (F)	1.0	1.1	Date of collection	Oct. 8,	Nov. 19,
Nitrate (NO ₃)	. 5	.0		1944	1951
Dissolved solids	834	784			
Depth (feet)				778	
Diameter (inches)				$20-10\frac{3}{4}$	1
Date drilled		• • • • • • • • • • • • • • • • • • • •		1944	Ī
Percent of supply					1
- 0- 00 0 Duppe,		• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	l .	1

aCity tap.

TYLER (Population, 38, 968)

Ownership: Municipal; supplies also about 180 persons outside the city limits. Total population supplied, about 39,150.

Source: Lake Tyler, approximately 12 miles southeast of the city, off U. S. Highway 64 on Prairie Creek. Auxiliary or emergency supply, Bellwood Lake approximately 4 miles southwest of the city on Indian Creek, and 7 wells (2 to 8) at various points within the city limits. The depth of wells is reported to be 1,064, 1,057, 1,026, 1,037, 1,036, 1,075, and 1,144 ft, and the average yield is 681 gpm. The city expects to use the auxiliary supply during summer months of each year.

Treatment: Surface-water supply: prechlorination, aeration, coagulation with alum and lime, sedimentation, rapid sand filtration, postchlorination, and addition of lime for pH control. Well 4: aeration, coagulation with lime, pressure filtration, and chlorination. Wells 2, 3, 5, 6, 7, and 8: chlorination at each well.

Rated capacity of treatment plant: Lake Tyler plant: 10,500,000 gpd. Lake Bellwood plant: 3,000,000 gpd.

Raw-water storage: Lake Tyler, capacity 13,849,000,000 gal; Lake Bellwood, ---. Finished-water storage: 1 underground reservoir, 2,500,000 gal; 2 standpipes, 1,500,000 and 750,000 gal; 1 elevated tank, 500,000 gal.

TYLER--Continued

The water is pumped from Lake Tyler, intake approximately $2\frac{1}{2}$ miles from Whitehouse Dam, to the treatment plant approximately $1\frac{1}{2}$ miles southeast of Tyler. The water is prechlorinated at the pumping plant before being pumped to the treatment plant. The water flows through the treatment plant into an underground reservoir from which it is pumped to the distribution system and elevated storage. Wells 2, 3, 5, 6, 7, and 8 are pumped directly into the distribution system. Well 4 is pumped to a small treatment plant at the well, from which the finished water is pumped into the distribution system. The flow pattern of the water from Bellwood Lake to the distribution system is similiar to that of Lake Tyler.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Bellwood Lake (raw water)	Lake Tyler (raw water)	Lake Tyler (finished water)
Silica (SiO ₂)	8, 6	4.0	3.5
Iron (Fe)	.04	. 03	.05
Manganese (Mn)		.00	.00
Calcium (Ca) ······	5.2	9.0	21
Magnesium (Mg)		4.6	4.6
Sodium (Na)	4. 5	10	<i>[</i> 11
Potassium (K)		10	1.2
Carbonate (CO ₃)		0	2
Bicarbonate (HCO ₃)	20	46	61
Sulfate (SO ₄)	2	7.3	19
Chloride (Cl)		12	17
Fluoride (F)	1.0	.3	. 1
Nitrate (NO ₃)	.8	. 5	.0
Dissolved solids	56	92	132
Hardness as CaCO ₃ :			
Total	21	41	71
Noncarbonate	5	4	18 .
Colon		4-	4.0
Color		15	10
pH	7.0	6.8	8.6
Specific conductance		100	900
(micromhos at 25 C.)		138	200
Turbidity	ì		58
Temperature (F.) Date of collection	92 Tuly 26 10/2	56 Feb. 27, 1952	Feb. 27, 1952
Date of confection	July 20, 1945	Feb. 21, 1902	100. 21,1002

	as	kalini CaC (ppm)		рĦ			as	rdness CaCO _s (ppm)		Turbidity		
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water	18 28	19 33	17 24	7.0 8.5	7.0 8.9	7.0 8.2						

^aBellwood Lake, Jan. 1 to Nov. 28, 1951.

413

TYLER--Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

Silica (SiO ₂) 11 14 14 Iron (Fe) .01 3.5 .28 Manganese (Mn) Calcium (Ca) 8.4 28 68 Magnesium (Mg) 1.7 4.5 4.1 Sodium (Na) 29 53 131 Potassium (K) 4.0 6.8 8.7 Carbonate (CO ₃) 0 0 0 0 Bicarbonate (HCO ₃) 94 93 110 Sulfate (SO ₄) 8.3 61 176 Chloride (Cl) 6.0 50 148 Fluoride (F) 4 1.0 .0 Nitrate (NO ₃) .0 .2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7 Specific conductance (micromhos at 25 C.) 187 482 1,05 </th <th></th> <th></th> <th></th> <th></th>				
Iron (Fe)				Well 6 (raw water)
Iron (Fe)	Silica (SiO ₂)	11	14	14
Manganese (Mn) Calcium (Ca) 8.4 28 68 Magnesium (Mg) 1.7 4.5 4.1 Sodium (Na) 29 53 131 Potassium (K) 4.0 6.8 8.7 Carbonate (CO ₂) 0 0 0 Bicarbonate (HCO ₃) 94 93 110 Sulfate (SO ₄) 8.3 61 176 Chloride (Cl) 6.0 50 148 Fluoride (F) 4 1.0 .0 Nitrate (NO ₃) .0 .2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7. Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity		.01	3.5	. 28
Calcium (Ca) 8.4 28 68 Magnesium (Mg) 1.7 4.5 4.1 Sodium (Na) 29 53 131 Potassium (K) 4.0 6.8 8.7 Carbonate (CO ₃) 0 0 0 0 Bicarbonate (HCO ₃) 94 93 110 Sulfate (SO ₄) 8.3 61 176 Chloride (Cl) 6.0 50 148 Fluoride (F) 4 1.0 0 Nitrate (NO ₃) 0 2 0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7 Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity	Manganese (Mn)			
Magnesium (Mg) 1.7 4.5 4.1 Sodium (Na) 29 53 131 Potassium (K) 4.0 6.8 8.7 Carbonate (CO ₃) 0 0 0 0 Bicarbonate (HCO ₃) 94 93 110 Sulfate (SO ₄) 8.3 61 176 Chloride (Cl) 6.0 50 148 Fluoride (F) .4 1.0 .0 Nitrate (NO ₃) .0 .2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7 Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity	Calcium (Ca)	8.4	28	68
Potassium (K) 4.0 6.8 8.7 Carbonate (CO ₃) 0 0 0 0 Bicarbonate (HCO ₃) 94 93 110 Sulfate (SO ₄) 8.3 61 176 Chloride (Cl) 6.0 50 148 Fluoride (F) 4 1.0 0 Nitrate (NO ₃) 0 2 0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity	Magnesium (Mg)	1.7	4.5	4.1
Potassium (K) 4.0 6.8 8.7 Carbonate (CO ₃) 0 0 0 Bicarbonate (HCO ₃) 94 93 110 Sulfate (SO ₄) 8.3 61 176 Chloride (Cl) 6.0 50 148 Fluoride (F) 4 1.0 .0 Nitrate (NO ₃) 0 2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7. Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity	Sodium (Na)	29	53	131
Bicarbonate (HCO ₃) 94 93 110 Sulfate (SO ₄) 8.3 61 176 Chloride (CI) 6.0 50 148 Fluoride (F) 4 1.0 .0 Nitrate (NO ₃) .0 .2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7. Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity	Potassium (K)	4.0	6.8	8.7
Sulfate (SQ ₄)	Carbonate (CO ₃)	0	0	0
Chloride (Cl) 6.0 50 148 Fluoride (F) .4 1.0 .0 Nitrate (NO ₂) .0 .2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7 Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity	Bicarbonate (HCO ₃)	94	93	110
Fluoride (F) .4 1.0 .0 Nitrate (NO ₃) .0 .2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7 Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity			61	176
Nitrate (NO ₃) .0 .2 .0 Dissolved solids 115 276 610 Hardness as CaCO ₃ : 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7 Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity			50	148
Dissolved solids 115 276 610 Hardness as CaCO3: 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7. Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity			1.0	.0
Hardness as CaCO ₃ : Total	Nitrate (NO ₅)	.0	. 2	.0
Total 28 88 186 Noncarbonate 0 12 96 Color pH 8.1 7.2 7. Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity		115	276	610
Noncarbonate 0 12 96 Color pH 8.1 7.2 7. Specific conductance (micromhos at 25 C.) 187 482 1,05 Turbidity				
Color		28		
pH	Noncarbonate	0	12	96
pH	Color			
Specific conductance (micromhos at 25 C.)		8.1	7. 2	7. 5
(micromhos at 25 C.)	•	•		
Turbidity		187	482	1,050
Temperature (F) 79				·
	Temperature (F.)		79	78
Date of collection Aug. 3, 1943 July 27, 1943 Sept. 9, 194	Date of collection	Aug. 3, 1943	July 27, 1943	Sept. 9, 1944
			1.026	1,036
			1938	1944
Percent of supply	Percent of supply			

UNIVERSITY PARK (Population, 24, 275)

Ownership: (See Highland Park.)

VICTORIA (Population, 16, 126)

Ownership: Municipal.

Source: 7 wells (5 to 10, 12), 612, 365, 412, 414, 604, 1,012, and 751 ft deep, within 400 ft of pumping station 1 and near west city limits on Pine Street. The yield of the wells is reported to be 402, 500, 731, 430, 603, 1,000, and 1,350 gpm.

Treatment: Aeration (by forced air at plant 1; sprays at plant 2).

Raw-water storage: --

Finished-water storage: 1 reservoir, 1,000,000 gal; 2 elevated tanks, 300,000 and 500,000 gal; 2 ground storage tanks, 300,000 gal.

The wells are pumped individually to one or the other of two central pumping plants (No. 1 plant at the end of West Station Street; No. 2 plant on Pine Street). The water at plant No. 1 flows through a sand trap to the aeration chamber before entering the ground storage tank, from which it is pumped into the distribution system. The water at plant No. 2 is aerated before entering the ground storage tank, from which it is pumped into the distribution system

ANALYSES

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	P 44				
	Well 5	Well 6	Well 8	Well 10	Finished
	(raw	(raw	(raw	(raw	water
	water)	water)	water)	water)	(city tap)
Silica (SiO ₂)	21	26	26	23	22
Iron (Fe)	4.7	3.0	7.9	. 97	.03
Manganese (Mn)					.00
Calcium (Ca)	34	36	36	18	28
Magnesium (Mg)	11	11	12	6.9	10
Sodium (Na)	146	152	134	221	148
Potassium (K)	7.9	6.4	3.9	6.6	2.0
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	402	386	366	348	366
Sulfate (SO ₄)	14	10	3.0	37	2.7
Chloride (Cl)	80	102	93	168	91
Fluoride (F)	.4	. 6	.6	. 6	.3
Nitrate (NO ₃)	.0	.0	.0	.0	.0
Dissolved solids	505	527	495	656	488
Hardness as CaCO _c :					
Total	130	135	140	74	111
Noncarbonate	0	0	0	0	0
Color					10
рН	7.0	7. 2	7.4	7.5	7.6
Specific conductance	.,,				
(micromhos at 25 C.)	868	900	836	1,130	816
Turbidity					
Temperature (F.)		74	75	82	
Date of collection	Apr. 20.	Apr. 2,	Apr. 20,	Apr. 20,	Dec. 12,
2010 01 00110001011 11111111	1945	1945	1945	1945	1951
D 11 (0 1)					
Depth (feet)	612	365	414	1,012	
Diameter (inches)	$12\frac{1}{2} - 10$	$16-8\frac{1}{2}$	$10\frac{3}{4} - 8$	16-8 5/8	
Date drilled	1934	1938	1941	1942	
Percent of supply					

TEXAS 415

VERNON (Population, 12,651)

Ownership: Municipal; supplies also about 20 people outside the city limits. Total population supplied, about 12,700.

Source: 34 wells in 5 well fields \(\frac{1}{4} \) to 2\(\frac{1}{4} \) miles from the County Courthouse in Vernon. Field 1: 5 wells (1 to 5) 48 to 52 ft deep; Field 2: 8 wells (1 to 8) 40 to 44 ft deep; Field 3: 5 wells (1 to 5) 41 to 46 ft deep; Field 4: 8 wells (1 to 8) 37 to 42 ft deep; Field 5: 8 wells (1 to 8) 38 to 45 ft deep. The yield from each well

field is reported to be 245, 570, 510, 660, and 635 gpm, respectively.

Treatment: Chlorination.

Rated capacity of pumping stations: 1,700,000 gpd. Raw-water storage: 10 ground reservoirs, 258,000 gal. Finished-water storage: Elevated tank, 500,000 gal.

The wells are pumped individually to a settling basin at each well field. The water is pumped from the settling basins into the distribution system and elevated tank, being chlorinated just prior to entering the distribution system.

ANALYSES

	Field 1 Well 5	Field 2 Well 1	Field 2 Well 2	Field 4 Well 1	Finished water (city tap)
Silica (SiO_2)	20		23	24	
Iron (Fe)	. 02		. 05	. 07	
Manganese (Mn)				.00	
Calcium (Ca)	79	83	75	56	70
Magnesium (Mg)	37	46	42	38	31
Sodium (Na)	75	79	46	€ 68	79
Potassium (K)	J "	13	40	8.	
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	324	314	306	335	321
Sulfate (SO ₄)	60	67	59	49	54
Chloride (Cl)	6 5	74	58	41	72
Fluoride (F)	1.3		1.3	1.4	
Nitrate (NO ₃)	110	168	76	64	65
Dissolved solids	603	643	602	494	540
Hardness as CaCO ₃ :	1				
Total	349	396	360	296	302
Noncarbonate	84	138	108	21	39
ColorpHSpecific conductance	8. 2		 8. 3	5 7. 7	
(micromhos at 25 C.)				808	879
Turbidity					
Temperature (F.)		66		65	
Date of collection	Oct. 30,	Oct. 11,	Oct. 11,	Feb. 20,	Apr. 10,
,	1943	1943	1943	1952	1951
Depth (feet)	48	44	44	41	
Diameter (inches)	18	18	18	18	
Date drilled Percent of supply	1931	1933	1926	1940	
					\ _

WACO (Population, 84, 706)

Ownership: Municipal; supplies also about 6,000 people outside the city limits, and Beverly Hills. Total population supplied, about 91,400. Texas Water Co.; supplies about 6,300 of the total population.

Source: Municipal: Lake Waco, approximately $7\frac{1}{2}$ miles northwest of the city on the Bosque River; 2 wells (1 and 2), 1,600 and 1,540 ft deep, at the municipal airport used solely for the maintenance of the airport. Texas Water Co.: 2 wells (1 and 2), 2,160 and 2,200 ft deep, which pump directly into the distribution system.

Treatment: Lake water: prechlorination, coagulation with alum, activated carbon for odor and taste control, sedimentation, rapid sand filtration, and postchlorination. Well water: chlorination.

Rated capacity of treatment plant: 20,000,000 gpd.

Raw-water storage: 1 ground reservoir, 1,000,000 gal.

Finished-water storage: 2 ground reservoirs, 6,000,000 and 5,000,000 gal; clear well, 3,500,000 gal; 2 elevated tanks, 750,000 and 250,000 gal.

The water from Lake Waco flows by gravity, intake at the lake spillway, approximately $5\frac{1}{2}$ miles to the ground reservoir at the treatment plant. The finished water from the treatment plant and clear well is pumped into the distribution system and storage.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)								
	Lake	Lake	Finished	Airport	Texas Water			
	Waco	Waco	water	well 1	Co. well 1			
	(raw water)	(raw water)	water,	(raw water)	(raw water)			
Silica (SiO ₂)	7.6	6.2	4.9	16	20			
Iron (Fe)	. 06	. 04		. 05	. 01			
Manganese (Mn)		.00	. 00		. 00			
Calcium (Ca)	70	50	52	2.0	3.2			
Magnesium (Mg)	11.	6.6	6.3	1.3	1.3			
Sodium (Na)	30	15	15	240	248			
Potassium (K)	. 6		. 4	4.8	2.8			
Carbonate (CO _s)	3 9	0	0	26	0			
Bicarbonate (HCO ₃)	137	164	152	386	432			
Sulfate (SO ₄)	52	30	41	108	124			
Chloride (Cl)	33	14	15	44	47			
Fluoride (F)	. 8	. 3	. 2	1.0	1.1			
Nitrate (NO.)	5.9	• . 5	. 2	1.2	1.0			
Dissolved solids	335	225	225	627	664			
Hardness as CaCO ₂ :								
Total	220	152	156	10	14			
Noncarbonate	42	18	31	0	0			
					_			
Color		10	15		0			
p H		7.6	7.3	8.5	8.2			
Specific conductance]							
(micromhos at 25 C.)		367	376	1,000	1, 060			
Turbidity								
Temperature (F.)		56	61	94	91			
Date of collection	Jan. 8,	Feb. 29,	Feb. 29,		Feb. 29,			
	1943	1952	1952	1949	1952			
Depth (feet)				1,600	2, 160			
Diameter (inches)	•••••••	• • • • • • • • • • • • • • • • • • • •		$8\frac{1}{2} - 6\frac{1}{2}$	10-7			
Date drilled				1942	1945			
Percent of supply		• • • • • • • • • • • • • • • • • • • •						
I crecit or suppry	************							

TEXAS 417

WAXAHACHIE (Population, 11,204)

Ownership: Municipal; supplies also about 25 people outside the city limits. Total population supplied, 11,250.

Source: 4 wells (1 to 4), 2,950, 2,950, 2,950, and 2,800 ft deep at East Madison St., Main and Tuggle Sts., Exposition Grounds, and Getzendander Park.
 Treatment: Wells 1, 2, and 3, chlorination. Well 4, aeration (cascades) and chlorination.

Raw-water storage: None.

Finished-water storage: 2 elevated tanks, 200,000 and 125,000 gal; 2 ground reservoirs, 400,000 and 200,000 gal.

The wells are pumped individually. Wells 1, 2, and 3 are chlorinated individually and pumped into a common reservoir from which the water is pumped into the distribution system and elevated tanks. The water from Well 4 is aerated, chlorinated, and pumped into a ground reservoir from which it is pumped into the distribution system and elevated tanks.

ANALYSES

	Well 1	Well 2	Well 3	Well 4
•	(raw water)	(raw water)	(raw water)	(raw water)
Silica (SiO ₂)	20	22	20	23
Iron (Fe)	. 10	.05	. 15	01
Manganese (Mn)				.00
Calcium (Ca)	4.8	4.0	5.0	3.3
Magnesium (Mg)	1.7	1.6	3.2	1.2
Sodium (Na)	427	3 462	√ 414	348
Potassium (K)	4.8	7 402	4.8	.8
Carbonate (CO ₃)		6	28	0
Bicarbonate (HCO ₃)	492	520	480	563
Sulfate (SO ₄)	112	167	113	109
Chloride (Cl)		288	262	132
Fluoride (F)		1.8	1.8	1.8
Nitrate (NO ₃)		.0	.8	.0
Dissolved solids	1,110	1,210	1,120	895
Hardness as CaCO ₃ :		·	,	
Total	19	16	26	13
Noncarbonate	0	0	0	0
Color				, 0
pH	8. 1	8.2	8, 5	8.2
Specific conductance		[0.0	
(micromhos at 25 C.)	1,920	1,930	1,890	1,470
Turbidity	1,000	1,555		-,
Temperature (F.)		121	120	112
Date of collection	July 6,			Feb. 28,
	1948	1949	1948	1952
Depth (feet)				2,800
Diameter (inches)	2,300	2,000	12	16-6
Diameter (menes)		, ,		
Date drilled	about 1913	1919		Sept. 1949

WEST UNIVERSITY PLACE (Population, 17,074)

Ownership: Municipal; supplies about 100 persons outside the city limits. Total population supplied, about 17, 200.

Source: 4 wells (3 to 6), 768, 1, 183, 1, 673, and 2, 026 ft deep.

Treatment: Chlorination at the wells.

Raw-water storage: None.

Finished-water storage: Ground storage tanks and elevated tanks, 1,000,000 gal.

The wells are pumped individually into separate ground storage tanks. From the storage tanks the water is pumped into the distribution system. Overhead storage tanks, for pressure equalization, float on the distribution system.

ANALYSES.

	Well 3 (raw water)	Well 4 (raw water)	Well 5 (raw water)	Well 6 (finished water)
Silica (SiO ₂)	18	18		20
Iron (Fe)	. 04	. 09		. 08
Manganese (Mn)				.00
Calcium (Ca)		22	10	12
Magnesium (Mg)		6. 2	3.3	3.8
Sodium (Na)	N 98	93	114	√ 151
Potassium (K)	}	20	114	1.6
Carbonate (CO ₃)	0	0	6	0
Bicarbonate (HCO ₃)	265	265	26 8	326
Sulfate (SO_4)	9.8	6.0	8	7.7
Chloride (Cl)	.36	41	34	66
Fluoride (F)	. 4	. 4		1.6
Nitrate (NO ₃)	.0	.0		. 2
Dissolved solids	317	324	a 307	418
Hardness as CaCO ₃ :	66	80	38	46
Total	0	0	0	0
Noncarbonate	0	0	0	0
Color				10
рН	8.1	8.0		7.7
Specific conductance	0.1	0.0		1.1
(micromhos at 25 C.)	547	550		698
Turbidity	041			
Temperature (F.)				
Date of collection	Sept. 17,	Sept. 16,	Jan. 31,	Nov. 20,
	1943	1943	1942 ´	1951
Depth (feet)	768	1, 183	1,673	2,026
Diameter (inches)	1 2	16-8 1	$20-12\frac{1}{2}$	$20-12\frac{3}{4}$
Date drilled	1938	1939	1941	1949
Percent of supply				
- Control of Supply William				

a Sum of determined constituents.

TEXAS 419

WHITE SETTLEMENT (Population, 10,827)

Ownership: Municipal; supplies also about 200 people outside the city limits. Total population supplied, about 7,500. Liberator Village, a section of White Settlement, population about 3,500, has an independent system of supply.

Source: Municipal: 6 wells: 2 wells (1 and 2) 300 and 180 ft deep on Raymond Street; 2 wells (4 and 5) about 180 and about 280 ft deep on Hannan Street; 1 well (3) about 180 ft deep on Redford Street; 1 well (6) about 280 ft deep on Rumfield Road. The wells pump directly into the distribution system. Liberator Village: wells.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: 2 ground reservoirs, 200,000 and 100,000 gal; 1 elevated

tank, 100,000 gal.

ANALYSES

	Municipal well 1	Trinity well, Liberator Village	Paluxy well, Liberator Village
Silica (SiO ₂)	19	10	16
Iron (Fe)	. 09	. 10	. 19
Manganese (Mn)	.00		
Calcium (Ca)	55	14	23
Magnesium (Mg)	23	1.8	13
Sodium (Na)	37	207	98
Potassium (K)	2, 0'	7.6	7.2
Carbonate (CO ₃)	0		0
Bicarbonate (HCO ₃)	283	a 456	306
Sulfate (SO ₄)	60	79	50
Chloride (Cl)	12	31	16
Fluoride (F)	3	1.4	.6
Nitrate (NO ₃)	7.5	.5	9.0
Dissolved solids	. 388	574	381
Hardness as CaCO ₃ :	1])
Total		42	111
Noncarbonate	0	0	Õ
Color		·	
pH	, ,		
Specific conductance	7.7	8.4	7.6
(micromhos at 25 C.)		•	
Turbidity		925	630
	1		
Temperature (F.) Date of collection	64	76	70
			Sept. 19, 1949
Depth (feet)	000	1,352	282
Diameter (inches)			
Date drilled	1943		
Percent of supply			

a Alkalinity as bicarbonate (HCO₃).

WICHITA FALLS (Population, 68,042)

Ownership: Municipal; supplies also Holliday, and Sheppard Air Force Base. Total population supplied, about 98,000.

Source: Lake Kickapoo, maximum capacity 220,000 acre-ft, on North Fork Little Wichita River, 8.2 miles south of Mankins and 9.2 miles northwest of Archer City, Archer County. Auxiliary or emergency supply, Lake Wichita on Holiday Creek. 6 miles southwest of Wichita Falls.

Treatment: Prechlorination, coagulation with iron salts, softening with lime, sedimentation, rapid sand filtration, and postchlorination.

Rated capacity of treatment plant: 21,000,000 gpd.

Raw-water storage: 45,000,000 gal.

Finished-water storage: 2 underground reservoirs, 2,500,000 gal each; 2 elevated tanks, 1,000,000 and 500,000 gal.

The water is pumped from Lake Kickapoo to the treatment plant. The finished water from the treatment plant is pumped into the distribution system and storage.

ANALYSES

	Lake Kickapoo (raw water)	Finished water	Lake Wichita (raw water)
Silica (SiO ₂)	4.3	3, 6	8.6
Iron (Fe)	. 0	.0	. 03
Manganese (Mn)	.00	. 00	.00
Calcium (Ca)	33	13	120
Magnesium (Mg)	11	8.5	36
Sodium (Na)	25	26	<i>f</i> 304
Potassium (K)	. 8	} 20	.8.
Carbonate (CO ₃)	0	8	0
Bicarbonate (HCO ₃)	176	77	104
Sulfate (SO ₄)	8.4	15	239
Chloride (Cl)	18	21	552
Fluoride (F)	. 5	. 6	. 2
Nitrate (NO ₃)	. 5	. 5	1.5
Dissolved solids	197	141	1,310
Hardness as CaCO ₃ :			•
Total	128	67	448
Noncarbonate	0	0	362
		•	
<u>Color</u>	10	10	0
рН	7. 9	9.0	7.4
Specific conductance			
(micromhos at 25 C.)	335	244	2,440
Turbidity	20	10	
Temperature (F.)			
Date of collection	Feb. 20, 1952	Jan. 11, 1952	Mar. 24, 1952

UT AH 421

BRIGHAM CITY (Population, 6,790).

Ownership: Municipal; supplies also about 2,000 people at the Indian school outside the city limits. Total population supplied, about 8,800.

Source: Halling Spring, located at the head of Box Elder Canyon near Mantua.

Auxiliary supply, 2 wells, 205 and 412 ft deep and reported to yield 900 and 1,600 gpm. Well 1 is used as needed during summer months. Well 2 has not been used for 2 years.

Treatment: None.

Storage: 3 reservoirs, 1,200,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Halling Spring	Well 1a.	Well 2a
Silica (SiO ₂)	13	13	16
Iron (Fe)		.0	. 2
Manganese (Mn)		0	0
Calcium (Ca)	44	52	49
Magnesium (Mg)		20	19
Sodium (Na)	8.3	4.5	8.8
Potassium (K)	2. 7	<i>f</i>	0.0
Carbonate (CO ₃)			
Bicarbonate (HCO ₃)	239	226	228
Sulfate (SO ₄)		17	13
Chloride (Cl)	9.6	10	12
Fluoride (F)		. 2	.1
Nitrate (NO ₃)	2. 7	4.4	3. 1
Dissolved solids	224	243	243
Hardness as CaCO ₃ :	·		
Total		212	201
Noncarbonate	0	27	14
Color	5		
pH		7.8	8.2
Specific conductance		""	J
(micromhos at 25 C.)	404		
Turbidity			
Temperature (F.)	53		
Date of collection	Mar. 30, 1951	April, 1950	Apr. 18, 1950
Depth (feet)		205	412
Diameter (inches)			16-12
Date drilled		1935	1946
Percent of supply			
			l

a Analyzed by Utah State Dept. of Health, Salt Lake City.

CEDAR CITY (Population, 6, 106)

Ownership: Municipal; supplies also about 150 people outside the city limits. Total population supplied, about 6,250.

Source: Springs located in Coal Creek and Shurtz Canyon drainage basins, and 1 well 300 ft deep. The yield of the well is reported to be 100 gpm. Emergency supply from Shale Hill Spring.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: Reservoirs, 5,000,000 gal.

CEDAR CITY--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	19 .01 .00	Hardness as CaCO ₃ : Total Noncarbonate	191 14
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	52 15 4.5 1.9	Color pH Specific conductance (micromhos at	5 7.7
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	0 216 20 3.1 .2 2.0	Turbidity Temperature (F.) Date of collection	369 Dec. 4, 1951

LOGAN (Population, 16,832)

Ownership: Municipal.

Source: Dewitt Springs, located in Logan Canyon 7 miles from the canyon mouth,

Emergency supply from a canal from the Logan River.

Treatment: No treatment of spring water. Chiorination of canal water when used. Storage: 3,000,000 gal.

ANALYSES

		P			
	Dewitt Springs	Logan Ri v er		Dewitt Springs	Logan River
Silica (SiO ₂)	5.3	8.0	Hardness as CaCO ₃ :		
Iron (Fe)	. 01	. 01	Total	196	211
Manganese (Mn)			Noncarbonate	8	14
Calcium (Ca)	49	50		· ·	
Magnesium (Mg)	18	21	Color	5	5
Sodium (Na)	1.4	3.0	рН	8.1	8.1
Potassium (K)	1.6	2.7	Specific conductance		
Carbonate (CO ₃)	0	6	(micromhos at		
Bicarbonate (HCO ₃)	230	22 8	25 C.)	352	379
Sulfate (SO ₄)	8.1	14	Turbidity		
Chloride (Cl)		5.5	Temperature (F.)	47	45
Fluoride (F)	.0	.1	Date of collection	Mar.30,	Mar. 30,
Nitrate (NO ₃)	2.7	.8		1951	1951
Dissolved solids		212			,

UT AH 423

MURRAY (Population, 9,006)

Ownership: Municipal; supplies also about 150 people outside the city limits. Total population supplied, about 9, 150.

Source: McGhie Springs and tunnels located near mouth of Big Cottonwood Canyon; auxiliary supply, 27 flowing wells and Little Cottonwood Creek (see Salt Lake City). Twenty-one of the flowing wells, 44 to 290 ft deep, are in the Vine Street group. The remaining 6 flowing wells are in the Baker group.

Treatment: None.

Storage: Reservoir: 1,000,000 gal.

The flow from McGhie Springs and tunnels is reported to be about 2,200 gpm; the flow from the wells is estimated to be between 1,800 and 2,200 gpm. About 225 gpm is available from Little Cottonwood Creek when needed. The water from the wells and Little Cottonwood Creek is used to some extent 6 months of the year.

ANALYSES

	McGhie Springs	Vine Street wells	Baker wells
Silica (SiO ₂)		20	14
Iron (Fe)		. 02	. 02
Manganese (Mn)	.00	.02	.02
Calcium (Ca) ······	39	53	58
Magnesium (Mg)	12	17	22
Sodium (Na)	3.9	16	35
Potassium (K)	1.8	3.7	3.6
Carbonate (CO ₃)		0	0.0
Bicarbonate (HCO ₂)		199	214
Sulfate (SO ₄)		47	70
Chloride (Cl)		17	42
Fluoride (F)		.3	. 2
Nitrate (NO ₃)		3. 2	5.9
Dissolved solids	174	270	363
Hardness as CaCO ₃ :	113	210	303
Total	147	202	235
Noncarbonate		39	60
Troncar populate	30		00
Color	5	5	5
pH		8.0	7. 7
Specific conductance		3.0	•••
(micromhos at 25 C.)	297	446	607
Turbidity			
Temperature (F.)	45	52	52
Date of collection	Mar. 9, 1951	Mar. 9, 1951	Mar. 9, 1951
Depth (feet)			
		44-290	
Diameter (inches)		5	
Date drilled			
Percent of supply	**************		

OGDEN (Population, 57, 112)

Ownership: Municipal.

Source: System of 46 artesian wells 84 to 600 ft deep, about 10 miles northeast of the city, located beneath Pine View Reservoir in Ogden Canyon; auxiliary supplies from creeks tributary to Ogden River (Wheeler, Coldwater, and Warmwater Canyons), Divine Springs in Ogden Canyon, and 4 wells, 600, 484, 495, and 472 ft deep.

Treatment: Chlorination. Open reservoirs are treated with copper sulfate for algae control.

Storage: 60,000,000 gal.

The artesian well field was developed before the construction of Pine View Dam impounding the Ogden River in Pine View Reservoir covering the well field. To preserve the supply the wells were capped and undercut at an average depth of 9 ft below the original outlet.

The flow of the wells passes through steel pipes to 3 collector mains which empty into a steel collector tank encased in concrete. From the collector tank the water is carried by a 38 in. steel pipe 9,000 ft long to a point just below Pine View Dam where it connects with the city main through Ogden Canyon. The flow of the wells is controlled and after the filling of Pine View Reservoir was 24 second-feet, which was an increase of 39 percent over the original maximum natural flow.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey) Airport Airport Well at 23rd Airport Artesian well 2a well 3a St. & Van well 1 · wells (East well) (West well) (C. A. A.) Buren Ave. Silica (SiO₂)..... 14 25 11 21 16 Iron (Fe)09 . 23 .01 . 5 . 1 Manganese (Mn) Calcium (Ca) 120 45 49 55 36 Magnesium (Mg) 22 16 33 11 15 Sodium (Na) 235 8.5 31 46 18 Potassium (K) 8.0 4.0 13 Carbonate (CO₄) 0 0 0 Bicarbonate (HCO₃)..... 183 272 268 273 162 Sulfate (SO₄) 12 2.2 12 7.7 12 Chloride (Cl) 595 23 22 22 8.8 Fluoride (F) 2 . 2 . 2 . 1 Nitrate (NO.) 0 4.7 .0 b 1, 120 Dissolved solids 188 279 290 282 Hardness as CaCO .: Total 228 156 158 184 435 Noncarbonate 8 8 0 302 0 Color 2 pH 7.9 8.0 7.5 7.6 8.1 Specific conductance (micromhos at 25 C.) 334 479 2,070 Turbidity Temperature (F.)..... 65 Date of collection Apr. 17, Mar. 23, Sept. 11, Nov. 6, Sept. 11, 1950 1948 1949 1950 1951 Depth (feet) 84-600 495 472 600 484 Diameter (inches)...... 4-12 14 10 18 14 Date drilled 1945 1945 1943 1944 Percent of supply

a Analyzed by Utah State Dept. of Health, Salt Lake City.

b Concentration variable.

UT AH 425

OREM (Population, 8,351)

Ownership: Municipal. Total population supplied, about 10,000.

Source: Alta Ditch (fed by spring about 5 miles up Provo Canyon), group of small springs in lower Provo Canyon, Provo River impounded in Deer Creek Reservoir (see Salt Lake City); emergency supply from 2 drilled wells, 468 and 470 ft deep, each with a reported yield of 500 gpm.

Treatment: Chlorination. The well water, when used, is pumped directly into the distribution system and is not treated.

Raw-water storage: None.

Finished-water storage: 3 reservoirs, 2,650,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	1	G	l
	Alta Ditch	Springs	Canyon Road
	(raw water)	(chlorinated	well
Gilian (GiO)		water)	
Silica (SiO ₂)	4.8	8.2	15
Iron (Fe)	.01	.02	.01
Manganese (Mn)			
Calcium (Ca) ······		51	58
Magnesium (Mg)		18	24
Sodium (Na)	1 2	6.8	7.4
Potassium (K)	.6	1.6	.8
Carbonate (CO ₂)	· · · ·	0	0.
Bicarbonate (HCO ₃)		240	223
Sulfate (SO ₄)		28	56
Chloride (Cl)	1.1	7.0	15
Fluoride (F)	1.1		
Nitrate (NO ₃)		.2	.2
Dissolved solids		3.5	3.4
	122	24 3	300 ·
Hardness as CaCO ₃ :			
Total Noncarbonate	1.0	201	243
Noncarbonate	₩ · 11	5	60
a .			
Color		5`	5
рН	8.0	7.6	7.6
Specific conductance			
(micromhos at 25 C.)		427	470
Turbidity			
Temperature (F.)	50	54	59
Date of collection	Aug. 28, 1951	Aug. 28, 1951	Aug. 28, 1951
Depth (feet)			468
Diameter (inches)			12-10-8
Date drilled			
Percent of supply			1946
	L		

PRICE (Population, 6,010)

Ownership: Municipal; supplies also Wellington and about 1,200 people outside the city limits. Total population supplied, about 8,300.

Source: 5 springs located about 27 miles northwest of Price.

Treatment: None.

Storage: 3 reservoirs, 16,500,000 gal.

PRICE--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Springs (city tap)		Springs (city tap)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	5. 9 . 02 . 00	Hardness as CaCO ₃ : Total Noncarbonate	280 18
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	58 33 5.8 3.7	ColorpHSpecific conductance (micromhos at	5 7.4
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	0 320 24 10	Turbidity Temperature (F.)	522 44 Feb. 15,
Nitrate (NO _s) Dissolved solids	. 1 1. 6 297	Date of concessor	1951

PROVO (Population, 28, 937)

Ownership: Municipal; supplies also about 400 people outside the city limits. Total population supplied, about 29, 350.

Source: Springs in Provo Canyon: Yellow Jacket Spring, Spring Dell Spring, Mary's Spring, Canyon Glen Spring, and several other small springs. Auxiliary supplies, creeks tributary to Provo River: Upper Falls, Bridal Falls, Lost Creek, and South Fork Creek; Provo River impounded in Deer Creek Reservoir (see Salt Lake City). The creeks of the auxiliary supply contribute 9 to 10,000,000 gpd during summer months. During 1950 water used from Provo River amounted to 123,200,000 gal.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: Reservoir, 5,000,000 gal.

ANALYSIS

	Springs, composite (reservoir)		Springs, composite (reservoir)
Silica (SiO ₃)	7.4	Hardness as CaCO ₃ :	150
Iron (Fe)	.02	Total	152
Manganese (Mn)		Noncarbonate	. 16
Calcium (Ca)	38		
Magnesium (Mg)	14	Color	6
Sodium (Na)	2.9	pH	7. 7
Potassium (K)	1.3	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	166	25 C.)	300
Sulfate (SO ₄)	19	Turbidity	
Chloride (Cl)	2.4	Temperature (F.)	46
Fluoride (F)	.0	Date of collection	Mar. 23,
Nitrate (NO ₃)	1.7		1951
Dissolved solids	167		

SALT LAKE CITY (Population, 182, 121)

UTAH

Ownership: Municipal; supplies also Holladay and about 18,350 people in suburban areas outside the city limits. Total population supplied, about 204,100.

Source: Big Cottonwood Creek, 35 percent of supply; Parley's Creek impounded in Mountain Dell Reservoir, 21 percent of supply; Little Cottonwood Creek, 16 percent of supply; City Creek, 15 percent of supply; Emigration Tunnel, 4 percent of supply. Auxiliary supplies from 99 wells in artesian basin about 7 miles southeast of Salt Lake City, 4 percent of supply; 5 pumped wells, 464, 440, 385, 535, and 500 ft deep, 5 percent of supply.

Treatment: Chlorination and ammoniation of surface-water sources; chlorination of water from artesian basin; pumped well water and Emigration Tunnel water not treated. Copper sulfate is used at Mountain Dell Reservoir for algae control.

Raw-water storage: Mountain Dell Reservoir, 1,050,000,000 gal; Twin Lakes, 306,000,000 gal; Mary Lake, 242,000,000 gal.

Finished-water storage: 11 reservoirs with a combined capacity of 52,900,000 gal.

The composition of the water varies throughout the distribution system and changes considerably at different times of the year, although all supplies are mixed to some degree before reaching the consumer, except for City Creek which supplies the northern part of the city. The analyses given are believed to show reasonably well the composition of the water from the various sources of supply.

An important future source of water (beginning 1952) supplied by the Metropolitan Water District will be Provo River impounded in Deer Creek Reservoir and carried in the Salt Lake Aqueduct. Two reservoirs, with a combined capacity of 40,000,000 gal, are now under construction to receive water from Deer Creek Reservoir.

ANALYSES

(miaryses, in p	arts her m	illion, by c	. D. Georg	Program Day Ac	·J/
	Big Cot- tonwood Creek	Parley's Creek	Little Cot- tonwood Creek	City Creek	Deer Creek Reservoir
Silica (SiO ₂)	7.1	13	6.7	9, 2	10
Iron (Fe)	.04	.02	. 14	. 05	.04
Manganese (Mn)					
Calcium (Ca)	36	77	22	62	59
Magnesium (Mg)	12	10	4.9	17	16
Sodium (Na)	Ь ⁻	/ 16	`		(12
Potassium (K)	3.7	4.6	} 4.4	8.7	2.1
Carbonate (CO ₃)	7 o	Ö	0	0	0
Bicarbonate (HCO ₃)	123	269	60	2 48	196
Sulfate (SO ₄)	38	33	30	17	58
Chloride (Cl)	4.0	20	2.1	16	10
Fluoride (F)	.2	. 2	.3	.1	.3
Nitrate (NO _s)	.7	.2	. 9	.2	1.3
Dissolved solids	162	309	101	252	270
Hardness as CaCO ₂ :					
Total	139	233	7 5	224	213
Noncarbonate	38	12	26	22	52
Color					
pH	8. 2	8.0	7.9	8.0	7.4
Specific conductance					
(micromhos at 25 C.)	281	515	169	443	436
Turbidity					
Temperature (F.)					
Date of collection			Apr. 22,	Mar. 24,	Nov. 25,
	1949	1949	1949	1949	1949

SALT LAKE CITY--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Emigration Tunnel	Artesian wells (composite)	Well 1056-A
Silica (SiO ₂)	15	14	19
Iron (Fe)	. 05	.03	.05
Manganese (Mn)	·		
Calcium (Ca)	125	54	83
Magnesium (Mg)	22	18	31
Sodium (Na)	1	23	35
Potassium (K)	} 17	2.9	2.9
Carbonate (CO ₃)	ا ٥	0	ا ق
Bicarbonate (HCO ₃)	320	196	286
Sulfate (SO ₄)		63	99
Chloride (Cl)	20	28	41
Fluoride (F)	- 1	2	.0
Nitrate (NO _s)	2.4	4.8	15
Dissolved solids	555	308	471
Hardness as CaCO ₃ :			
Total	448	208	334
Total	186	48	100
Color			
На	7.4	7.9	7.5
Specific conductance		1.9	1.0
(micromhos at 25 C.)	835	512	755
Turbidity	000	312	100
Temperature (F.)		59	
Date of collection		Aug. 8, 1949	Aug. 18, 1949
Depth (feet)		58-440	464
Diameter (inches)			20
Date drilled			1945
Percent of supply	4	4	3

SOUTH SALT LAKE (Population, 7,704)

Ownership: Municipal; supplies also about 1,000 people in a school outside the

city limits. Total population supplied, about 8,700.

Source: 6 flowing wells (1, 4 to 8) 585, 932, 750, 631, 895, and 970 ft deep.

Auxiliary water is purchased from Salt Lake City, supplied by pipeline from wells in artesian basin (see Salt Lake City), and is automatically drawn upon whenever the pressure in the city mains drops below a certain point (14 percent of supply in 1950).

Treatment: None.

Storage: Elevated tank, 350,000 gal.

SOUTH SALT LAKE -- Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Flowing wells (composite)		Flowing wells (composite)
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	16 . 06	Hardness as CaCO ₃ : Total Noncarbonate	372 174
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	88 37 52 3.0 0	Color pH Specific conductance (micromhos at	7 7.8
Bicarbonate (HCO _s) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO _s)	241 233 40 . 2 . 9	25 C.) Turbidity Temperature (F.) Date of collection	903 62 Mar. 9, 1951
Depth (feet) Diameter (inches) Date drilled			585-970 4 1946-50 86

SPRINGVILLE (Population, 6,475)

Ownership: Municipal; supplies also about 325 people outside the city limits.

Total population supplied, about 6,800.

Source: Spring Creek Springs (55 percent of supply), Burt Spring (40 percent of supply), Knowles Tunnel (5 percent of supply). It is planned to use Bartholomew Spring as an additional supply by late summer of 1951. These sources of supply are located in canyons east of Springville.

Treatment: None.

Storage: Reservoirs, 1, 208, 000 gal.

SPRINGVILLE -- Continued

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Spring a	Spring b	Burt Spring	Knowles Tunnel	Bartholomew Spring
Silica (SiO ₂)	7.6	7.9	10	8.0	8.0
Iron (Fe)	. 02		.01	. 03	.02
Manganese (Mn)					
Calcium (Ca)	50	49	66	51	48
Magnesium (Mg)	16	17	17	22	7.0
Sodium (Na)	2.9	9.1	∫ 6.4	4.5	2.3
Potassium (K)	2.7) 9.1	2.2	3.0	2.9
Carbonate (CO ₃)	0	0	0	0	0
Bicarbonate (HCO ₃)	217	224	249	240	176
Sulfate (SO ₄)	11	12	34	22	5. 2
Chloride (Cl)	2.8	9.0	8.5	5.0	1.9
Fluoride (F)	.1	Í	.0	.1	.1
Nitrate (NO _s)	3.8	3.9	.7	2.2	2.4
Dissolved solids	196	218	261	231	159
Hardness as CaCO.:			ļ		
Total	191	192	234	218	149
Noncarbonate	13	9	30	21	4
Color	5		5	5	5
рН	7.9		7.6	, -	7.8
Specific conductance					
(micromhos at 25 C.)	356	364	445	415	286
Turbidity]		110	110	200
Temperature (F.)	47	48	49	l .	43
Date of collection	Mar. 23,	,		Mar. 23,	Mar. 23,
	1951	1951	1951	1951	1951
	1 201	1 1001	1 1001	1 2001	1001

a Upper Spring Creek.

TOOELE (Population, 7,269)

Ownership: Municipal.

Source: Middle Canyon Springs located 2 miles southeast of Tooele, and Settlement Canyon Spring $1\frac{1}{2}$ miles south of Tooele. These springs furnish about 80 percent of the total supply. Auxiliary supply from 3 wells (1 to 3), 452, 70, and 79 ft deep, about 20 percent of the total supply.

Treatment: None.

Storage: Reservoirs with a combined capacity of 4,000,000 gal.

Wells 2 and 3 are located just below the springs in Middle and Settlement Canyons, respectively, so that the water from these wells is probably very similar in composition to the spring water. Well 1 is the main one in use during the summer months.

b Lower Spring Creek.

TOOELE -- Continued ANALYSES

	Middle Canyon Springs	Settlement Canyon Spring	Well 1 ²
Silica (SiO ₂)	12	13	13
Iron (Fe)	.02	. 02	b4.5
Manganese (Mn)	.00	.00	
Calcium (Ca) ······	76	70	85
Magnesium (Mg)	22	23	21
Sodium (Na)		22	12
Potassium (K)		2.9	4
Carbonate (CO ₃)	0	0	Ō
Bicarbonate (HCO ₃)	298	305	276
Sulfate (SO ₄)	39	20	35
Chloride (Cl)	15	36	30
Fluoride (F)		.1	
Nitrate (NO ₃)	2.4	1.8	
Dissolved solids	320	326	370
Hardness as CaCO _s :	-	-	• • • • • • • • • • • • • • • • • • • •
Total		269	297
Noncarbonate	36	19	72
Color	5	. 5	
рН		7.6	8
Specific conductance	***	7.0	
(micromhos at 25 C.)	558	586	
Turbidity			
Temperature (F.)	40	51	
Date of collection		Mar. 1, 1951	Jan. 3, 1947
Depth (feet)			452
Diameter (inches)			12-10
Date drilled			1946
Percent of supply			1940
z		1	

a Analyzed by University of Utah, Salt Lake City, Utah. b Iron and aluminum oxides.

ABERDEEN, WASHINGTON (Population, 19,653)

Ownership: Municipal; supplies also about 1,000 people outside the city limits. Total population supplied, about 20,650.

Source: Wishka River impounded 21.7 miles northeast of Aberdeen. A separate industrial system, municipally owned, utilizes large quantities of raw water from the Wynooche River. Emergency supplies from Wynooche River and Lake Aberdeen.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: 10,000,000 gpd.

Raw-water storage: 120,000,000 gal. Finished-water storage: 24,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water ^a
Silica (SiO ₂)	14	Hardness as CaCO ₃ :	
Iron (Fe)	.12		25
Manganese (Mn)		Noncarbonate	0
Calcium (Ca)	5.6		
Magnesium (Mg)	2.6	Color	5
Sodium (Na)	3.2	pH	7.3
Potassium (K)	2. 1	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	34	25 C.)	60
Sulfate (SO_4)	1.0	Turbidity	
Chloride (Cl)	3.4	Temperature (F.)	61
Fluoride (F)	.3	Date of collection	June 12,
Nitrate (NO ₃)	. 2		1951
Dissolved solids	57		

^a Wishka River.

BELLINGHAM (Population, 34,112)

Ownership: Municipal; supplies also about 1,500 people outside the city limits. Total population supplied, about 35,600.

Source: Lake Whatcom (96 percent of supply) and Lake Padden (4 percent of supply).

Treatment: Chlorination and ammoniation. Lime added to water from Lake Whatcom for corrosion control.

Rated capacity of treatment plant: 100,000,000 gpd.

Raw-water storage: Lake Whatcom and Lake Padden (capacities not computed). Finished-water storage: 4 reservoirs, 2,000,000 gal; elevated tank, 75,000 gal.

BELLINGHAM -- Continued

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

•	Finished water ^a		Finished water ^a
Silica (SiO ₂)	1.3	Hardness as CaCO ₃ :	4.0
Iron (Fe)	.01	Total Noncarbonate	16 0
Calcium (Ca) Magnesium (Mg)	4.8 .9	Color	5
Sodium (Na) Potassium (K)	3.3	pHSpecific conductance	7.2
Carbonate (CO ₂)	1.6 0	(micromhos at	
Bicarbonate (HCO ₃) Sulfate (SO ₄)	21 4.0	25 C.) Turbidity	55
Chloride (Cl)	3.2	Temperature (F.)	69
Fluoride (F)	.2	Date of collection	Aug. 13, 1951
Dissolved solids	35		1001

a Lake Whatcom.

BREMERTON (Population, 27,678)

Ownership: Municipal; supplies also Puget Sound Naval Shipyard and military personnel, and about 20,000 people outside the city limits. Total population supplied, about 63,000.

Source: Anderson Creek, Gorst Creek, and Union River (82 percent of supply); 7 artesian wells (1 to 7) ranging in depth from 245 to 627 ft (18 percent of supply). The yield of the wells is reported to range from 130 to 1,500 gpm.

Treatment: Anderson and Gorst Creek stations: sedimentation, chlorination, and ammoniation; chlorination of Union River supply and at main distribution reservoir.

Rated capacity of treatment plant: 15,000,000 gpd.

Raw-water storage: None.

Finished-water storage: Reservoirs, 22,000,000 gal.

ANALYSES

(Analyses, in parts per million, by Northwest Laboratories, Seattle, Wash.)

	Anderson Creek	Gorst Creek	Union River
Silica (SiO ₂)	39	. 38	33
Iron (Fe)	.09	. 15	. 3 8
Manganese (Mn)			
Calcium (Ca) ······	7.2	9. 7	9.0
Magnesium (Mg)	4.2	4.9	2.7
Sodium (Na)	7.5	6.9	12
Potassium (K)			
Carbonate (CO ₂)			
Bicarbonate (HCO ₃)	50	58	56
Sulfate (SO ₄)	.8	.8	2.3
Chloride (Cl)	6.8	7.7	7.4
Fluoride (F)	.0	.0	.0
Nitrate (NO ₃)	.0	.0	.0
Dissolved solids	a 90	95	a 94.
Hardness as CaCO.:	, ,		
Total	35	44	34
Noncarbonate	0	0	0

a Sum of determined constituents.

BREMERTON, Analyses -- Continued

Anderson Creek Creek River		ON, Analyses-	-Continued	
PH				
Silica (SiO ₃) 31 41 30 Iron (Fe) .14 .09 .05 Manganese (Mn) Calcium (Ca) 12 15 19 Magnesium (Mg) 5.1 3.2 4.0 Sodium (Na) 13 9.9 12 Potassium (K) Carbonate (CO ₃) 79 76 78 Bicarbonate (HCO ₃) 79 76 78 Sulfate (SO ₄) 4.4 1.6 .8 Chloride (Cl) 7.1 6.4 17 Fluoride (F) 0 0 0 0 Dissolved solids 106 108 114 Hardness as CaCO ₃ : 10 10 0 Total 51 52 64 Noncarbonate 0 0 0 Oph 8.2 8.2 8.1 Specific conductance (micromhos at 25 C.) Temperature (F.) </td <td>pHSpecific conductance (micromhos at 25 C.)TurbidityTemperature (F.)</td> <td>7. 5 </td> <td>7. 6 </td> <td>7.4</td>	pHSpecific conductance (micromhos at 25 C.)TurbidityTemperature (F.)	7. 5 	7. 6 	7.4
Iron (Fe)			Well 6	Well 7
pH	Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids Hardness as CaCO ₃ : Total	.14 12 5.1 13 79 4.4 7.1 .0 .0	.09 15 3.2 9.9 76 1.6 6.4 .0 .0	.05 19 4.0 12 78 .8 17 .0 .0
	pH	8. 2 July 5, 1951 245 22	8. 2 July 5, 1951 535	8. 1 July 5, 1951 627 16
		**		

EVERETT (Population, 33,849)

Ownership: Municipal; supplies also about 10,000 people outside the city limits. Total population supplied, about 43,800.

Source: Sultan River stored in Lake Chaplain.

Treatment: Chlorination.

Rated capacity of treatment plant: 110,000,000 gpd. Raw-water storage: Lake Chaplain, 4,500,000,000 gal.

Finished-water storage: 30,000,000 gal.

EVERETT--Continued ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	6.1	Hardness as CaCO ₂ : Total Noncarbonate	12 1
Calcium (Ca)	3.6 .7 1.0 1.0	Color	5 7. 2
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	13 2.5 1.2 .1	25 C.)	29 60 June 9, 1951
Dissolved solids	22		

HOQUIAM (Population, 11, 123)

Ownership: Municipal; supplies also about 700 people outside the city limits.

Total population supplied, about 11,800.

Source: Davis Creek (75 percent of supply) and headwaters of the Little Hoquiam River (25 percent of supply). There are 2 emergency connections with the supply of the city of Aberdeen.

Treatment: Aeration and chlorination.

Rated capacity of treatment plant: 6,500,000 gpd.

Raw-water storage: --

Finished-water storage: 11,000,000 gal.

Davis Creek (raw water)	(Analyses, in parts pe	r million, by U.	2. Georogicar 20	II VCy)
Iron (Fe) .19 .21 .18 Manganese (Mn) Calcium (Ca) 5.3 5.5 5.0 Magnesium (Mg) 1.5 1.7 1.9 Sodium (Na) 5.4 5.4 5.6 Potassium (K) 3.0 3.0 2.4 Carbonate (CO ₃) 0 0 0 Bicarbonate (HCO ₃) 34 28 32 Sulfate (SO ₄) 1.0 1.6 1.2 Chloride (Cl) 5.8 7.8 6.8 Fluoride (F) .2 .2 .2 Nitrate (NO ₃) .2 .2 .2 .1 Dissolved solids 57 58 57 Hardness as CaCO ₃ : 57 58 57 Total 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance 74 71 76 Turbidity		(raw water)	River	water
Iron (Fe)			18	19
Manganese (Mn)	Iron (Fe)	19		
Calcium (Ca) 5.3 5.5 5.0 Magnesium (Mg) 1.5 1.7 1.9 Sodium (Na) 5.4 5.4 5.6 Potassium (K) 3.0 3.0 2.4 Carbonate (CO ₃) 0 0 0 Bicarbonate (HCO ₃) 34 28 32 Sulfate (SO ₄) 1.0 1.6 1.2 Chloride (Cl) 5.8 7.8 6.8 Fluoride (F) .2 .2 .2 Nitrate (NO ₃) .2 .2 .2 Hardness as CaCO ₃ : 57 58 57 Hardness as CaCO ₃ : 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 PH 7.2 7.0 7.3 Specific conductance (micromhos at 25 C.) 74 71 76 Turbidity Temperature (F,) 54 53 62	Manganese (Mn)			
Magnesium (Mg) 1.5 1.7 1.9 Sodium (Na) 5.4 5.4 5.6 Potassium (K) 3.0 3.0 2.4 Carbonate (CO ₃) 0 0 0 Bicarbonate (HCO ₃) 34 28 32 Sulfate (SO ₄) 1.0 1.6 1.2 Chloride (Cl) 5.8 7.8 6.8 Fluoride (F) 2 2 2 3 Nitrate (NO ₃) 2 2 2 1 1 Dissolved solids 57 58 57 Hardness as CaCO ₃ : 57 58 57 Total 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance 74 71 76 Turbidity			5.5	5.0
Sodium (Na) 5.4 5.4 5.6 Potassium (K) 3.0 3.0 2.4 Carbonate (CO ₃) 0 0 0 Bicarbonate (HCO ₃) 34 28 32 Sulfate (SO ₄) 1.0 1.6 1.2 Chloride (Cl) 5.8 7.8 6.8 Fluoride (F) 2 2 2 3 Nitrate (NO ₃) 2 2 2 3 Nitrate (NO ₃) 57 58 57 Hardness as CaCO ₃ : 57 58 57 Total 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 ph 7.2 7.0 7.3 Specific conductance 74 71 76 Turbidity		J. U		
Potassium (K) 3.0 3.0 2.4 Carbonate (CO ₃) 0 0 0 Bicarbonate (HCO ₃) 34 28 32 Sulfate (SO ₄) 1.0 1.6 1.2 Chloride (Ci) 5.8 7.8 6.8 Fluoride (F) 2 2 2 Nitrate (NO ₃) 2 2 2 Dissolved solids 57 58 57 Hardness as CaCO ₃ : 57 58 57 Total 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance (micromhos at 25 C.) 74 71 76 Turbidity - - - - Temperature (F,) 54 53 62		1.0		
Carbonate (CO ₃) 0 32 S2 SUIfate (SO ₄) 1.0 1.6 1.2 Chloride (CI) 5.8 7.8 6.8 6.8 Fluoride (F) 2 .2 .2 .3 Nitrate (NO ₃) .2 .2 .2 .2 .1 1 1 .2 .2 .2 .1 .1 .2 .2 .1 .1 .2 .2 .2 .1 .1 .2 .2 .2 .1 .1 .2 .2 .1 .1 .2 .2 .1 .1 .2 .2 .1 .1 .2 .2 .1 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .2 .1 .2 .2 .2 .1		J. 7		
Bicarbonate (HCO ₃) 34 28 32 Sulfate (SO ₂) 1.0 1.6 1.2 Chloride (Cl) 5.8 7.8 6.8 Fluoride (F) .2 .2 .2 .3 Nitrate (NO ₃) .2 .2 .2 .1 Dissolved solids 57 58 57 Hardness as CaCO ₃ : 57 58 57 Total 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance 10 74 71 76 Turbidity - - - - Temperature (F,) 54 53 62		0.0		
Sulfate (SO ₂)				
Chloride (Cl) 5.8 7.8 6.8 Fluoride (F) 2 2 Nitrate (NO ₃) 2 2 3 Nitrate (NO ₃) 57 58 57 Hardness as CaCO ₃ : Total 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 PH 7.2 7.0 7.3 Specific conductance (micromhos at 25 C.) 74 71 76 Turbidity 75 58 Total 76 Tremperature (F,) 54 53 62	Sulfate (SO.)	J	1	
Fluoride (F)	Chloride (Cl)	_, _,		
Nitrate (NO ₃) .2 .2 .1 Dissolved solids 57 58 57 Hardness as CaCO ₃ : 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance (micromhos at 25 C.) 74 71 76 Turbidity - - - - Temperature (F,) 54 53 62		0.0		
Dissolved solids 57 58 57 Hardness as CaCO3: 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance 74 71 76 Turbidity 7 74 71 76 Temperature (F,) 54 53 62	Nitrate (NO)			.3
Hardness as CaCO ₃ : Total				
Total 19 21 20 Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance 74 71 76 Turbidity - - - Temperature (F,) 54 53 62		57	58	57
Noncarbonate 0 0 0 Color 10 10 5 pH 7.2 7.0 7.3 Specific conductance (micromhos at 25 C.) 74 71 76 Turbidity - - - Temperature (F,) 54 53 62	Hardness as CaCO ₃ :			
Color			21	20
pH	Noncarbonate	0	0	0
pH				
Specific conductance 74 71 76 Turbidity Temperature (F.) 54 53 62		10	10	5
(micromhos at 25 C.)		7. 2	7.0	7.3
Turbidity				
Turbidity			71	76
Temperature (F.)	Turbidity			
Date of collection	Temperature (F.)	54	53	62
	Date of collection	June 12, 1951		

KENNEWICK (Population, 10, 106)

Ownership: Municipal; supplies also about 2,100 people outside the city limits. Total population supplied, about 12,200.

Source: Columbia River; auxiliary supply from a well 552 ft deep. The yield of the well is reported to be 600 gpm.

Treatment: Chlorination. (Fluoridation equipment is currently being installed, November 1951).

Rated capacity of treatment plant: 10,000,000 gpd.

Raw-water storage: --

Finished-water storage: 5,000,000 gal.

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

		water
15 . 07 	Hardness as CaCO ₃ : Total Noncarbonate	80 9
22 6.1 5.4 2.1	Color	7 7. 6
87 16 2.5 .5	25 C.)	179 59 June 7, 1951
	.07 22 6.1 5.4 2.1 0 87 16 2.5	Total

LONGVIEW (Population, 20,339)

Ownership: Municipal; supplies also about 4,000 people outside the city limits. Total population supplied, about 24,300.

Source: Cowlitz River.

Treatment: Coagulation with alum and lime, sedimentation, rapid sand filtration, chlorination, and ammoniation.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: 500,000 gal.

Finished-water storage: 7,000,000 gal.

	Finished water		Finished water
Silica (SiO ₂)	12 .04	Hardness as CaCO ₈ : Total Noncarbonate	22 5
Calcium (Ca)	7.3 .8 2.4 1.9	Color pH Specific conductance (micromhos at	5 7.8
Sulfate (CO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	20 8.0 1.9 .3	25 C.)	63 June 13, 1951
Dissolved solids	45		

LONGVIEW--Continued

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)			рН		Hardness as CaCO ₃ (ppm)		Turbidity				
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water	 18				7. 2 7. 4					25 0	10 0 0 0	25 0

OLYMPIA (Population, 15,819)

Ownership: Municipal; supplies also about 300 people outside the city limits.

Total population supplied, about 16, 100.

Source: McAllister Springs.

Treatment: Chlorination.

Rated capacity of treatment plant: 20,000,000 gpd.

Raw-water storage: 2,000,000 gal. Finished-water storage: 7,700,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	36 . 03	Hardness as CaCO ₃ : Total Noncarbonate	50 0
Calcium (Ca)	10 6. 2 6. 9 2. 9	Color	3 7. 4
Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl)	0 72 3.6 4.4	(micromhos at 25 C.) Turbidity Temperature (F.)	133 62
Fluoride (F) Nitrate (NO ₃) Dissolved solids	. 0 . 8 107	Date of collection	June 11, 1951

PASCO (Population, 10,228)

Ownership: Municipal. Source: Columbia River.

Treatment: Coagulation with alum and lime, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: --

Finished-water storage: 600,000 gal.

PASCO--Continued ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

			· ·
	Finished water		Finished water
Silica (SiO ₂) Iron (Fe)	7.3 .04	Hardness as CaCO ₃ : Total	70
Manganese (Mn)		Noncarbonate	14
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	21 4.2 1.8 1.0	Color pH Specific conductance (micromhos at	5 7. 7
Bicarbonate (HCO ₃)	68	25 C.)	148
Sulfate (SO ₄)	17	Turbidity	
Chloride (Cl)	1.5	Temperature (F.)	71
Fluoride (F)	.0	Date of collection	June 7,
Nitrate (NO ₃) Dissolved solids	. 3 8 9		1951

PORT ANGELES (Population 11, 233)

Ownership: Municipal; supplies also about 2,000 people outside the city limits.

Total population supplied, about 13, 200.

Source: Morse Creek. Treatment: Chlorination.

Rated capacity of treatment plant: 11,000,000 gpd.

Raw-water storage: --

Finished-water storage: 7,000,000 gal.

ANALYSIS

Finished water		Finished water
6. 8 . 02	Hardness as CaCO ₃ : Total Noncarbonate	56 0
18 2.6 3.2 1.8	ColorpHSpecific conductance (micromhos at	5 7.5
68 7.7 1.5 .2 .1	25 C.)	128 Aug. 7, 1951
	water 6.8 .02 18 2.6 3.2 1.8 0 68 7.7 1.52	Water

PULLMAN (Population 12,022)

Ownership: Municipal; supplies also about 100 people outside the city limits.

Total population supplied, about 12, 100.

Source: 3 wells (1 to 3) 150, 232, and 167 ft deep. The yield of the wells is reported to be 750, 650, and 900 gpm.

Treatment: Chlorination.

Rated capacity of treatment plant: 3,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 2,050,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂)	63 . 23 	Hardness as CaCO ₃ : Totaí Noncarbonate	115 0
Calcium (Ca)	23 14 22 5.4 0	Color pH Specific conductance (micromhos at	5 7.8
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	199 1.8 3.1 .3 .1	25 C.)	308 59 June 6, 1951

RENTON (Population, 16,039)

Ownership: Municipal; supplies also about 1,000 people outside the city limits.

Total population supplied, about 17,000.

Source: Springbrook Springs and 4 wells (1 and 2, and Liberty Park 1 and 2). The yield of the wells is reported to be 105, 260, 1,000 and 1,000 gpm.

Emergency supply from city of Seattle. Treatment: Chlorination (at source only).

Raw-water storage: 1,800,000 gal. Finished-water storage: 1,000,000 gal.

A private residential development of 150 homes, supplied by a private water company, has been annexed by the city. The source of the supply is springs, with a 25,000 gal storage tank. The city of Renton may purchase this water system.

RENTON--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Finished water a	Finished water b		Finished water ^a	Finished waterb
Silica (SiO ₂) Iron (Fe)	.02	28 . 01	Hardness as CaCO ₃ : Total	66	64
Manganese (Mn)			Noncarbonate	2	5
Calcium (Ca)		12			
Magnesium (Mg)	8.2	8.2	Color	5	5
Sodium (Na)	5.3	5.5	pH	7.2	7.3
Potassium (K)	4.0	2.6	Specific conductance]
Carbonate (CO ₂)	0	0	(micromhos at		
Bicarbonate (HCO ₃)	78	72	25 C.)	161	161
Sulfate (SO ₄)	9.6	9.8	Turbidity		
Chloride (Cl)	4.2	4.0	Temperature (F.)	50	52
Fluoride (F)		.2	Date of collection	June 8,	June 6,
Nitrate (NO ₃)	4.0	4.2		1951	1951
Dissolved solids		109		-301	

^a Springbrook Springs.

RICHLAND (Population, 21, 809)

Ownership: U. S. Government. Operated by General Electric Co. Supplies also about 6,000 people outside Richland. Total population supplied, about 27,800. Source: Domestic supply, 18 wells in four groups: Richland group of 8 wells (2, 4, 5, 12, 13, 14, 15, and 18) ranging in depth from 70 to 140 ft, and reported to yield 6,000 gpm; North Richland group of 6 wells (A, B, C, D, E, and 5) ranging in depth from 100 to 120 ft and reported to yield 7,000 gpm; Columbia group of 3 wells (A, B, and C) 80 to 110 ft deep, and reported to yield 2,200 gpm; and 1 well (1100-8) 120 ft deep, and reported to yield 1,000 gpm. The Columbia group of wells is used only during the summer months.

Treatment: Chlorination of domestic supply.

Raw-water storage: --

Finished-water storage: 5, 400, 000 gal.

A separate supplementary supply for lawn sprinkling during summer months is obtained from a canal from the Yakima River through a separate distribution system. The river water is used also to flood the percolation basin in the well field area in order to maintain the ground water level during the summer months.

The water delivered to the consumers varies in chemical composition according to the wells pumped and somewhat with the level of the ground water table.

b Liberty Park wells.

RICHLAND--Continued

ANALYSES

(Analyses, in parts per million, by General Electric Co., Richland, Wash.)

	8 wells (Richland group)	6 wells (North Rich- land group)	Well 1100-8
Silica (SiO ₂)	55	38	52
Iron (Fe)	. 01	. 02	. 00
Manganese (Mn)	. 00	. 00	< .01
Calcium (Ca) ······	50	27	34
Magnesium (Mg)	16	5.8	7.5
Sodium (Na)	21	8.5	16
Potassium (K)	4	1.3	2.7
Carbonate (CO ₃)			
Bicarbonate (HCO ₃)	20 6	100	139
Sulfate (SO ₄)	.44	12	18
Chloride (Cl)		4.0	5.5
Fluoride (F)	. 2	. 2	. 2
Nitrate (NO ₃)	. 9	. 8	. 3
Dissolved solids	307	148	186
Hardness as CaCO ₃ :			
Total	191	91	116
Noncarbonate	22	9	2
Color	5	0	0
рН	7.7	7.8	7.8
Specific conductance			
(micromhos at 25 C.)	424	202	283
Turbidity	2	< 1	<0.1
Temperature (F.)			
Date of collection	Apr. 24, 1951	Apr. 24, 1951	Apr. 24, 1951
Depth (feet)	70 to 140	100 to 120	120
Diameter (inches)			10
Date drilled		1948	1948
Percent of supply			
	1		

Regular determinations at treatment plant, 1950

	Alkalinity as CaCO ₃ (ppm)		рН			Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		232	 80	 7. 2	7.8	7.0	 140	202	90	2.0	2.0	2.0

SEATTLE (Population, 467, 591)

Ownership: Municipal; supplies also about 110,000 people outside the city limits.

Total population supplied, about 580,000. Source: Cedar River impounded in Lake Youngs. Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: Approximately 300,000,000 gpd.

Raw-water storage: Lake Youngs, 3,660,000,000 gal.

Finished-water storage: 365,000,000 gal.

SEATTLE--Continued ANALYSIS (Analysis, in parts per million, by Seattle Water Dept.)

	Cedar River		Cedar River
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	4.0 .04 .0	Hardness as CaCO ₃ : Total Noncarbonate	18 0
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Carbonate (CO ₃)	$egin{array}{ccc} 6.3 & \\ .6 & \\ & .4 & \\ 0 & \end{array}$	Color	7.3
Sulfate (SO ₄)	22 2. 1 . 6 . 0 . 0	25 C.)	 0 43 Jan. 8, 1951

SPOKANE

(Population, 161, 721)

Ownership: Municipal; supplies also about 400 people outside the city limits. Total population supplied, about 162, 100.

Source: 13 wells in two groups (87 percent of supply) with two pumping stations: Well Pumping Station (5 wells of 45 ft mean depth) and Parkwater Pumping Station (8 wells of 140 ft mean depth). Seven auxiliary wells (13 percent of supply) with four pumping stations: Ray Street (2 wells of 76 ft mean depth); Grace Avenue (1 well); Hoffman Avenue (2 wells of 225 ft mean depth); and Baxter (2 wells of 130 ft mean depth). The auxiliary wells are used during the summer months.

Treatment: Chlorination.

Rated capacity of treatment plant: --

Raw-water storage: --

Finished-water storage: 70,100,000 gal.

ANALYSES
(Analyses, in parts per million, by City of Spokane Health Dept.)

(maryses, in parts per immon, by City of Spokane health Bept.)								
	Well Station a	Park- water Station ^b		Well Station a	Park- water Station b			
Silica (SiO ₂)	20	11	Hardness as CaCO ₃ :					
Iron (Fe)		. 0	Total	153	161			
Manganese (Mn)	.0	.0	Noncarbonate	10	17			
Calcium (Ca)	35	38						
Magnesium (Mg)	16	16	Color ·····					
Sodium (Na)	4.0	4.9	pH	7.9	7.9			
Potassium (K)			Specific conductance					
Carbonate (CO.)	0	lol	(micromhos at					
Bicarbonate (HCO.)	175	175	25 C.)					
Sulfate (SO ₄)	13	13	Purbidity					
Chloride (Cl)		1.9	Temperature (F.)					
Fluoride (F)		.0	Date of collection	June	June			
Nitrate (NO ₃)		2.2		1951	1951			
Dissolved solids		186		1551	1551			
Depth (feet)	Depth (feet)							
Diameter (feet)	45 28 to 50	140 6						
Date dug	1907-25	1948						
Percent of supply				60	27			
Beppen in	- 00							

a Five wells.

b Eight wells.

SPOKANE -- Continued

ANALYSES

(Analyses, in parts per million, by City of Spokane Health Dept.)

	Ray Street Station (2 wells)	Hoffman Avenue Sta- tion (2 wells)	Baxter Station (2 wells)	Grace Avenue Well
Silica (SiO ₂)	7.2	7.2	6.4	15
Iron (Fe)	.0	.0	.0	
Manganese (Mn)				.0
Calcium (Ca)		32	37	29
Magnesium (Mg)	12	15	13	11
Sodium (Na)	14	1.0	4.1	3.0
Potassium (K)				
Carbonate (CO ₃)		0	0	0
Bicarbonate (HCO ₃)	176	146	145	126
Sulfate (SO ₄)	22	16	27	12
Chloride (Cl)		2. 5	5. 7	3.6
Fluoride (F)				.0
Nitrate (NO ₃)		. 9	. 4	4.0
Dissolved solids	191	144	195	132
Hardness as CaCO ₃ :				
Total	147	142	146	118
Noncarbonate	2	22	27	14
Color				
рН	7.6	8.1	8. 2	7.9
Specific conductance	1.0	0.1	0.2	'''
(micromhos at 25 C.)				
Turbidity				
Temperature (F.)				
Date of collection	Oct. 1945	Sept. 1944	Dec. 1944	J uly 1951
· · · · · · · · · · · · · · · · · · ·				
Depth (feet)	76	225	130	
Diameter (feet)	20	5	2	
Date dug		1923	1943	
Percent of supply	6	3	. 3	4

TACOMA (Population, 143,673)

Ownership: Municipal; supplies also about 12,000 people outside the city limits. Total population supplied, about 155,700.

Source: Green River (94 percent of supply); auxiliary supply from 13 wells ranging in depth from 74 to 788 ft, and an average yield (reported) of 3, 490 gpm.

The well supply is used when the Green River is turbid, during peak demand for sprinkling, and for emergencies.

Treatment: Chlorination and ammoniation.

Rated capacity of treatment plant: 72,000,000 gpd.

Finished-water storage: Reservoirs, 160,000,000 gal; standpipes, 2,574,000 gal.

The intake on Green River is near Palmer, about 35 miles east of Tacoma. The water is transmitted by pipeline to McMillin Reservoir, located 8 miles southeast of Tacoma. A second pipeline connects McMillin Reservoir and the distribution system in Tacoma.

TACOMA--Continued ANALYSES

(Analyses, in parts per million, by Northwest Laboratories, Seattle, Wash.)

	Green River (raw water)	Finished water	Well 5-A
Silica (SiO ₂)	23	26	27
Iron (Fe)	0	0	0
Manganese (Mn)	0	0	0
Calcium (Ca) ······	5. 2	6.4	12
Magnesium (Mg)		1.3	7.7
Sodium (Na)	6.9	6.7	9.4
Potassium (K)			
Carbonate (CO ₃)			
Bicarbonate (HCO ₃)	29	30	56
Sulfate (SO ₄)	2.0	2. 1	·8.9
Chloride (Cl)	6.3	6.3	9.5
Fluoride (F)		0	0
Nitrate (NO_3)	0	_ 0	17
Dissolved solids	2 59	a 64	115
Hardness as CaCO ₃ :			
Total	18	21	61
Noncarbonate	0	0	16
Color	0	0	
pH	7.4	7.8	7.1
(micromhos at $25 C.$)			
Turbidity			
			
Date reported	Oct. 4, 1948	Oct. 4, 1948	
			378
			26
			1930
Percent of supply			
Potassium (K) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids Hardness as CaCO ₃ : Total Noncarbonate Color pH Specific conductance (micromhos at 25 C.) Turbidity Temperature (F.) Date reported Depth (feet) Diameter (inches) Date drilled	29 2.0 6.3 0 259 18 0 7.4	2. 1 6. 3 0 0 a 64 21 0	8.9 9.5 0 17 115 61 16 0 7.1 Oct. 4, 1948

Regular determinations at treatment plant

as	CaC	- 1	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
				7.8	7.1	21	61	18	0	150	0
	Av	as CaCo (ppm) Av Max	Av Max Min	as CaCO ₃ (ppm) Av Max Min Av 7.8	as CaCO ₃ pH (ppm) Av Max Min Av Max 7.8 7.8	as CaCO ₃ pH (ppm) Av Max Min Av Max Min 7.8 7.8 7.1	as CaCO ₃ (ppm) pH as (ppm) Av Max Min Av Max Min Av Av Max Min Av 7.8 7.8 7.1 21	Av Max Min Av Max Min Av Max Min Av Max 7.8 7.8 7.1 21 61	Av Max Min Av Max Min Av Max Min Av Max Min Av Max Min 7.8 7.8 7.1 21 61 18	Av Max Min Av Max Min Av Max Min Av Max Min Av Max Min Av Max Min Av 7.8 7.8 7.1 21 61 18 0	Av Max Min Av Max Min Av Max Min Av Max Min Av Max Min Av Max Min Av Max Min Av Max 7.8 7.8 7.1 21 61 18 0 150

a Sum of determined constituents.

VANCOUVER (Population, 41,664)

Ownership: Municipal; supplies also about 6,800 people outside the city limits. Total population supplied, about 48,500.

Source: 14 wells (72 percent of supply) and springs (28 percent of supply). The range in depth and reported yield of 5 wells (1, 3, 4, 5, and 6) represent about average conditions for the 14 wells. The depth and the yield of the 5 wells are as follows: well 1, 132 ft and 1,000 gpm; well 3, 128 ft and 1,000 gpm; well 4, 243 ft and 2,000 gpm; well 5, 240 ft and 1,200 gpm; well 6, 278 ft and 2,000 gpm.

Treatment: Chlorination. Raw-water storage: --

Finished-water storage: 5,728,000 gal.

The analysis given is representative of the water furnished to the consumers.

ANALYSIS

(Analysis, in parts per million, by Charlton Laboratories, Portland, Oreg.)

	Finished water (composite)		Finished water (composite)
Silica (SiO ₂) Iron (Fe)	44	Hardness as CaCO ₃ : Total	55
Manganese (Mn)	.0	Noncarbonate	0
Calcium (Ca) Magnesium (Mg)	14 4.8	Color	
Sodium (Na)	4.4	pHSpecific conductance	6.9
Carbonate (CO ₃)		(micromhos at	
Bicarbonate (HCO ₃) Sulfate (SO ₄)	73 5. 7	25 C.) Turbidity	
Chloride (Cl)	3.2	Temperature (F.)	
Fluoride (F)	.0	Date of analysis	Apr. 18, 1949
Dissolved solids	129		

WALLA WALLA (Population, 24, 102)

Ownership: Municipal; supplies also about 1,500 people outside the city limits. Total population supplied, about 25,600.

Source: Mill Creek (84 percent of supply); auxiliary supply from 3 wells (1 to 3), 810, 808, and 1,169 ft deep. The yield of the wells is reported to be 1,500, 1,200, and 2,000 gpm. The wells are pumped only during the summer months and furnish 16 percent of the annual supply.

Treatment: Chlorination of water from Mill Creek; well supply not treated.

Raw-water storage: 15,000,000 gal.

Finished-water storage: --

WALLA WALLA--Continued ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	39	Hardness as CaCO ₃ :	
Iron (Fe)	.03	Total	38
Manganese (Mn)		Noncarbonate	0
Calcium (Ca)	9.4		
Magnesium (Mg)	3.6	Color	5
Sodium (Na)	4.2	pH	7.6
Potassium (K)	2.6	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	60	25 C.)	102
Sulfate (SO ₄)	1.8	Turbidity	
Chloride (Cl)	1.0	Temperature (F.)	61
Fluoride (F)	. 2	Date of collection	June 6,
Nitrate (NO ₃)	. 2		1951
Dissolved solids	89		

WENATCHEE (Population, 13,072)

Ownership: Municipal; supplies also about 2,000 people outside the city limits.

Total population supplied, about 15, 100.

Source: Columbia River.

Treatment: Sedimentation, coagulation with alum, rapid sand filtration, and chlorination.

Rated capacity of treatment plant: 14,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 4,000,000 gal.

ANALYSIS
(Analysis, in parts per million, by U. S. Geological Survey)

(Allalysis, in par	rts per million	i, by U. S. Geological Surve	·y)
	Columbia River (raw water)		Columbia River (raw water)
Silica (SiO ₂) Iron (Fe)	9.6	Hardness as CaCO ₃ : Total	65
Manganese (Mn)		Noncarbonate	6
Calcium (Ca)	20 3.6	Color	
Sodium (Na) Potassium (K)	8.6	pH Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO ₃)	72	25 C.)	143
Sulfate (SO ₄)	21	Turbidity	
Chloride (Cl)	1	Temperature (F.)	53
Fluoride (F)	.2	Date of collection	May 12,
Nitrate (NO ₃)	.6		1949
Dissolved solids	a 100		

Regular determinations at treatment plant, 1950

	as	kalini S CaC (ppm)	O ₃	рН		Hardness as CaCO ₃ (ppm)			Turbidity			
	Av	Max	Min	Av	Max	Min	Av	Max	Min	Av	Max	Min
Raw water Finished water		51 50	39 41	7.7 7.5		7.3 7.3	45 46	60 60	30 32	2.3	3.5	1.0 0

^aSum of determined constituents.

YAKIMA (Population, 38,486)

Ownership: Municipal; supplies also about 3,800 people outside the city limits. Total population supplied, about 42,300.

Source: Naches River; emergency supply from 2 wells (1 and 2) 250 and 65 ft deep. (No well water was used during 1950.)

Treatment: Plain sedimentation, filtration through natural sand and gravel beds, and chlorination.

Rated capacity of treatment plant: --

Raw-water storage: --

Finished-water storage: 24,000,000 gal.

ANALYSIS

	Finished water ^a		Finished water ^a
Silica (SiO ₂) Iron (Fe) Manganese (Mn)	17 . 11 	Hardness as CaCO ₃ : Total Noncarbonate	21 0
Calcium (Ca)	6.1 1.4 3.0 1.0	Color	10 7. 1
Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Dissolved solids	30 2. 5 1. 7 . 1 . 1	25 C.) Turbidity Temperature (F.) Date of collection	57 64 June 7, 1951

a Naches River.

CASPER, WYOMING (Population, 23,673)

Ownership: Municipal; also supplies about 1,000 people outside the city limits. Total population supplied, about 24,700.

Source: Infiltration gallery along banks of North Platte River; impounding reservoir on Elkhorn Creek used to service small number of homes in higher part of city; 3 dug wells (1 to 3) each 30 ft deep, as stand-by.

Treatment: Chlorination, and copper sulfate for algae control as needed.

Raw-water storage: Elkhorn Creek Reservoir, 1,000,000 gal.

Finished-water storage: 4 open concrete reservoirs, 11,000,000 gal.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

		, .,	J /
	Infiltration gallery (fin- ished water)		Infiltration gallery (fin- ished water)
Silica (SiO ₂)	11	Hardness as CaCO ₃ :	
Iron (Fe)	. 03	Total	329
Manganese (Mn)	.01	Noncarbonate	180
Calcium (Ca)	91		
Magnesium (Mg)	25	Color	4
Sodium (Na)	59	pH	7.7
Potassium (K)	3.9	Specific conductance	
Carbonate (CO ₃)	0	(micromhos at	
Bicarbonate (HCO _s)	182	25 C.)	869
Sulfate (SO ₄)	275	Turbidity	1
Chloride (Cl)	21	Temperature (F.)	60
Fluoride (F)	.3	Date of collection	Oct. 27,
Nitrate (NO _s)	1.1		1951
Dissolved solids	615		

CHEYENNE (Population, 31, 935)

Ownership: Municipal; also supplies 10,000 to 12,000 people at Warren Air Base. Total population supplied, about 41,900 to 43,900.

Source: 14 wells ranging from 152 to 947 ft deep (11 of the wells are under 400 ft in depth) furnish 25 percent of regular supply; 5 reservoirs including Granite Springs, Crystal Lake, Old North Crow, New North Crow, and South Crow-all on branches of Crow Creek furnish 75 percent of regular supply.

Treatment: Well water, chlorination; creek water, coagulation with alum, slow sand filtration, chlorination, and copper sulfate, as needed, for algae control

Rated capacity of treatment plant: 12,000,000 gpd.

Raw-water storage: 5 impounding reservoirs (capacity not known).

Finished-water storage: 11,000,000 gal in open concrete basins and steel tank.

The well water is chlorinated and pumped to storage in a steel tank which automatically discharges when filled, to finished creek water in open concrete basins. A mixture of well water and creek water is delivered to the mains.

CHEYENNE -- Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Crow Creek Reservoirs (raw water)	Several wells Raw water (composite)	Finished water (city tap)
Silica (SiO ₂)	13	23	14
Iron (Fe)	. 02	. 09	. 03
Manganese (Mn)	. 02	. 02	. 02
Calcium (Ca)	26	39	29
Magnesium (Mg)		5.8	4.5
Sodium (Na)	4.8	8, 2	5.0
Potassium (K)	1. 9	2.0	1.9
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	100	155	105
Sulfate (SO ₄)	6.0	6.0	7.0
Chloride (Cl)	2.5	3.0	5.5
Fluoride (F)	1.0	.5	1.0
Nitrate (NO ₃)	.7	5.7	1.2
Dissolved solids		174	134
Hardness as CaCO _s :			
Total	83	121	91
Noncarbonate	1	0	5
Color	6	2	4
pH	7. 6	8. 1	7.8
Specific conductance			
(micromhos at 25 C.)	189	26 8	207
Turbidity	3	0.9	2
Temperature (F.)	44	53	56
Date of collection	Oct. 22, 1951	Oct. 22, 1951	Oct. 22, 1951

CODY (Population, 3,872)

Ownership: Municipal; also supplies about 400 people outside the city limits. Total population supplied, about 4,270.

Source: South Fork Shoshone River via Cody Canal, for regular supply. Water from Beckley Reservoir is used in extreme emergencies. The water is diverted into the Cody Canal 1 mile upstream from the Buffalo Bill Reservoir, and 9 miles southwest of the city.

Treatment: Coagulation with alum, sedimentation, chlorination, and filtration for regular supply. Slow sand filtration for auxiliary or emergency supply.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: City Reservoir 163,000,000 gal; Markham Reservoir, 49,200,000 gal. Auxiliary supply is stored in Beckley Reservoir, capacity not known.

Finished-water storage: 2,000,000 gal.

CODY--Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	15	14	Hardness as CaCO ₃ :		
Iron (Fe)	. 01	. 02	Total	126	126
Manganese (Mn)	. 08	. 04	Noncarbonate	14	14
Calcium (Ca)	31	30	-		
Magnesium (Mg)	12	12	Color	4	4
Sodium (Na)	58	56	pH	8.5	8.4
Potassium (K)	1.4	1.4	Specific conductance		
Carbonate (CO ₂)	6	0	(micromhos at		1
Bicarbonate (HCO ₃)	124	136	25 C.)	505	499
Sulfate (SO ₄)	135	130	Turbidity	5	3
Chloride (Cl)	3.5	4.5	Temperature (F.)		
Fluoride (F)		.3	Date of collection	Nov. 6,	Nov. 6,
Nitrate (NO ₂)	. 7	.3		1951	1951
Dissolved solids	327	332		1	

EVANSTON (Population, 3,863)

Ownership: Municipal; supplies also about 600 people at the Wyoming State Hospital. Total population supplied, about 4,500.

Source: Bear River. During the summer months 3 wells (1 to 3), 186, 65, and 76 ft deep, are pumped as needed. The yield of the wells is reported to be 710, 610, and 472 gpm.

Treatment: Chlorination. Raw-water storage: None.

Finished-water storage: Reservoirs, 2,000,000 gal.

The intake on Bear River is 9 miles upstream from Evanston, and the pipeline capacity is 2.5 mgd. For about two months during the summer the maximum demand is about 3.5 mgd, and the additional water needed is pumped from the wells directly into the distribution system.

ANALYSES

(pares per	million, of C.	D, Goodsgaan	
	Finished water a (city tap)	Well 1b	Well 2 ^b
Silica (SiO ₂)	9.0		
Iron (Fe)	. 04		
Manganese (Mn)	.00		
Calcium (Ca) ······	48		
Magnesium (Mg)	13		
Sodium (Na)	3.0		
Potassium (K)	2.1		
Carbonate (CO ₃)	0		
Bicarbonate (HCO ₃)	20 8		
Sulfate (SO ₄)	400 6.5		
Chloride (Cl)	0.0	07	0,1
Fluoride (F)		27	21
Nitrate (NO ₃)	• -		
Dissolved solids		5.3	14
	188	315	380
Hardness as CaCO ₃ :			
Total	173	210	240
Noncarbonate	0		

a Bear River. b Analysis by state chemist, Laramie, Wyoming.

EVANSTON, Analyses -- Continued

	Finished water ^a (city tap)	Well 1b	Well 2b
Color	7		
Specific conductance	8.0		
(micromhos at 25 C.) Turbidity	324		
Temperature (F.)	42 Mar. 14, 1951	 Apr. 25, 1938	Nov. 6, 1939

Regular determinations at treatment plant, 1950

		lkalir s CaC (ppm	O ₃		pH Av Max Min		Hardness as CaCO ₃ (ppm)			Turbidity		
	A٧	Max	Min	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min
Raw water Finished water		171 	89 				149	197	105	==		

^a Bear River.

LARAMIE (Population, 15, 581)

Ownership: Municipal.

Source: Soldier Springs, 24 percent of supply; City Springs, 30 percent of supply; Pope wells (1 to 3) 156, 162, and 158 ft deep (well 1 is not in use), 14 percent of supply; Sodergreen Lake 32 percent of supply (industrial and commercial use only). Sodergreen Lake, normally a nonpotable water, is also used for emergency purposes.

Treatment: Chlorination of City Springs, Soldier Springs, and Pope wells. (Fluoridation unit to be installed.) Sodergreen Lake is not treated. Finished-water storage: 2 concrete reservoirs 5,000,000 and 2,000,000 gal.

The flow of City Springs is gathered by gravity system of tiles and sumps and enters reservoir about 1 mile east of town. The city main from the reservoir is interconnected with 16-in. line from Soldier Springs and 12-in. line from Pope wells. When city consumption is less than rate of flow from Soldier Springs and Pope wells, water backs into city reservoir. Pope wells are used in summer months only.

Water from Sodergreen Lake is used by Union Pacific Railroad, University of Wyoming (irrig. and hydraulics), and city cemetery.

b Analysis by state chemist, Laramie, Wyoming.

LARAMIE -- Continued ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Pope well 3 (raw water)	City Springs (raw water)	Finished water (composite) a
Silica (SiO ₂)	9.0	8.8	11
Iron (Fe)	. 04	. 04	. 02
Manganese (Mn)	.00	.00	.00
Calcium (Ca) ······	56	53	51
Magnesium (Mg)	12	16	16
Sodium (Na)	1.8	1.3	1.3
Potassium (K)	1 2	1.0	.6
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	224	234	227
Sulfate (SO ₄)	1.0	3.0	3.0
Chloride (Cl)	3.0	3.0	3.0
Fluoride (F)	1	.1	.1
Nitrate (NO ₃)	5.9	5.6	5.5
Dissolved solids	201	207	205
Hardness as CaCO ₃ :			
Total	190	200	192
Noncarbonate	6	8	6
Color	2	2	2
pH	7.8	8.1	8.1
Specific conductance	,		
(micromhos at 25 C.)	361	370	362
Turbidity	1	0.9	0.8
Temperature (F.)	46	46	49
Date of collection	Oct. 21, 1951	Oct. 22, 1951	Oct. 22, 1951
Depth (feet)	158		
Diameter (inches)	15		
Date drilled	1939		
Percent of supply			

a City Springs and Soldier Springs.

RAWLINS (Population, 7,415)

Ownership: Municipal.

Source: 19 springs approximately 32 miles south of Rawlins for regular supply. Cross connection with the Union Pacific Railroad supply, State Penitentiary wells, and 1 municipal well 680 ft deep for emergency or auxiliary supply. The water is conducted (7 miles of gathering line) in wooden-stave pipe, 16-inch diameter, for a distance of 32 miles--thence to storage. Springs have concrete boxes constructed for receiving.

Treatment: None.

Storage: 4 ground, steel-covered tanks, 7,750,000, 7,750,000, 2,000,000, and 500,000 gal. Total storage 18,000,000 gal.

RAWLINS--Continued

ANALYSIS (Analysis, in parts per million, by U. S. Geological Survey)

	Finished water		Finished water
Silica (SiO ₂)	32 . 27 . 01	Hardness as CaCO ₃ : Total Noncarbonate	148 1
Calcium (Ca)	53 3.8 14 2.7	Color pH Specific conductance (micromhos at	7.8
Bicarbonate (HCO_3) Sulfate (SO_4) Chloride (CI)	0 179 33 2.0	Turbidity Temperature (F.)	345 1 52 Oct. 23,
Nitrate (NO _s) Dissolved solids	1. 2 237	2500 05 0550000000000000000000000000000	1951 ´.

RIVERTON (Population, 4,142)

Ownership: Municipal.

Source: 10 wells 385 to 662 ft deep with diameters from 6 to 10 in.

Treatment: None.

Storage: Steel elevated tanks, 200,000 gal.

All wells are connected to a collecting line to storage and to the city mains, although all the wells are not pumped as a unit. It is reported that the North Park (1 well) and South Park (2 wells) wells, the shallowest of all the wells, yield water that is considerably more mineralized and harder than the water from the deeper wells, and hence these wells are considered primarily as standby wells. Normally the supply is obtained by pumping alternately several of the deeper wells at one time.

The analyses given represent reasonably well the water as served to the consumers.

ANALYSES (Analyses, in parts per million, by U. S. Geological Survey)

(Allaryses,	III parts	her mirrir	on, by O. S. Georogica	u purvey)	
	Fenton Well	Burch Well		Fenton Well	Burch Well
Silica (SiO ₂) Iron (Fe)	. 01	13 . 03	Hardness as CaCO ₃ : Total	7	17
Manganese (Mn)	. 02		Noncarbonate	0	0
Calcium (Ca) Magnesium (Mg)	2. 9	6. 5 . 3	Color	1.	
Sodium (Na) Potassium (K)	160 . 5	142 . 4	pHSpecific conductance	8.7	8.6
Carbonate (CO ₃) Bicarbonate (HCO ₃)		7 191	(micromhos at 25 C.)	725	664
Sulfate (SO ₄)	161	125	Turbidity	1 56	55
Chloride (Cl) Fluoride (F)	. 4	9. 9 . 4	Temperature (F.) Date of collection	Oct. 27,	Oct. 22,
Nitrate (NO ₃) Dissolved solids	. 6 472	.8 394		1951	1948
Depth (feet) Diameter (inches)	609 10	600 8			
Date drilled	• • • • • • • • • • • • • • • • • • • •		••••••	1947	1947
rerection suppry	•••••	**********	***************************************		

ROCK SPRINGS (Population, 10,857)

Ownership: Southern Wyoming Utilities Co. (controlled by Union Pacific Railroad Co.). Supplies also the city of Green River (population, 3, 187). Total population supplied, 14,044.

Source: Green River.

Treatment: Coagulation with alum and lime, rapid sand filtration, and chlorination. Activated carbon used during periods of high turbidity.

Rated capacity of treatment plant: 5,000,000 gpd.

Raw-water storage: None.

Finished-water storage: 8,250,000 gal at Rock Springs.

The treatment plant and intake are on the river at Green River.

ANALYSIS

(Analysis, in parts per million, by U. S. Geological Survey)

	Tap water		Tap water
Silica (SiO ₂) Iron (Fe)	7. 7 . 03	Hardness as CaCO ₃ :	250
Manganese (Mn)	.00	Noncarbonate	102
Calcium (Ca)	61 24	Color	5
Sodium (Na) Potassium (K)	54 4.0	pH Specific conductance	7. 7
Carbonate (CO ₃) Bicarbonate (HCO ₃)	0 182	(micromhos at 25 C.)	686
Sulfate (SO ₄)	206	Turbidity	
Chloride (Cl)	7.5 .1	Temperature (F.)	44 Mar. 13,
Nitrate (NO ₃)	. 6	Butto of Goldon IIII	1951
Dissolved solids	474	<u> </u>	

Regular determinations at treatment plant, 1950

		lkalir s CaC (ppm	CO ₃	р Н		Hardness as CaCO ₃ (ppm)			Turbidity			
	Αv	Max	Min	Αv	Max	Min	Αv	Max	Min	Av	Max	Min
Raw water Finished water				8. 2 7. 4			200 205		120 125	500 0	5000 30	30 0

WYOMING 455

SHERIDAN (Population, 11,500)

Ownership: Municipal; also supplies about 2,000 people outside the city limits. Total population supplied, about 13,500.

Source: Headwaters of Goose Creek impounded in Twin Lakes Reservoir in the Bighorn Mountains 17 miles from the city.

Treatment: Plain sedimentation (12 hr detention), chlorination, and fluoridation. Rated capacity of treatment Plant; 800,000 gpd.

Raw-water storage: Reservoir, 490,000,000 gal; settling basins 3,000,000 gal. Finished-water storage: 5,800,000 gal.

The treatment plant is located several miles downstream from Twin Lakes Reservoir. Water from the treatment plant is piped through 16-in. pipe to storage in the city.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Raw water	Finished water		Raw water	Finished water
Silica (SiO ₂)	9.3	10	Hardness as CaCO ₃ :		
Iron (Fe)	. 02	. 04	Total	27	26
Manganese (Mn)	. 05	. 03	Noncarbonate	0	0
Calcium (Ca)		6.7			
Magnesium (Mg)	2.3	2.3	Color ······	5	5
Sodium (Na)	2.9	3.2	рН	7.1	7.2
Potassium (K)		.4	Specific conductance		
Carbonate (CO ₃)	0	0.	(micromhos at		
Bicarbonate (HCO ₃)	36	34	25 C.)	78.6	67.9
Sulfate (SO ₄)	2, 0	1.0	Turbidity	3	2
Chloride (Cl)		1.5	Temperature (F.)	35	
Fluoride (F)		.8	Date of collection	Nov. 7,	Nov. 7,
Nitrate (NO ₃)	. 7	.3		1951	1951
Dissolved solids	57	54	ıl en en en en en en en en en en en en en		

WORLAND (Population, 4, 202)

Ownership: Municipal; also supplies 51 people outside the city limits. Total population supplied, 4, 253.

Source: Two tile collection fields along the bank of the Big Horn River, 50 percent of the supply; Bighorn River 50 percent of the supply. The tile system collects irrigation return waters which are then mixed with the river water in the sedimentation basin.

Treatment: Coagulation with alum, sedimentation, filtration, and chlorination.

Rated capacity of treatment plant: 1,500,000 gpd.

Raw-water storage: None.

Finished-water storage: 780,000 gal.

ANALYSES

(Analyses, in parts per million, by U. S. Geological Survey)

	Bighorn River (raw water)	South tile field (raw water)	Finished water (composite)
Silica (SiO ₂)	10	25	14
Iron (Fe)	. 02	. 10	. 03
Manganese (Mn)	. 05	. 12	. 11
Calcium (Ca) ······	114	143	145
Magnesium (Mg)	40	47	52
Sodium (Na)	136	167	188
Potassium (K)	11	6. 1	8.5
Carbonate (CO ₃)	0	0	0
Bicarbonate (HCO ₃)	245	411	351
Sulfate (SO ₄)	465	505	605
Chloride (Cl)	44	36	52
Fluoride (F)	. 6	. 7	.6
Nitrate (NO ₃)	5. 2	16	5.4
Dissolved solids	986	1, 150	1,240
Hardness as CaCO ₃ :	l	'	•
Total	448	552	575
Noncarbonate	247	215	288
Color	4	5	5
pH	7.8	8.1	7. 7
Specific conductance			
(micromhos at 25 C.)	1,360	1,630	1,750
Turbidity	5	2	2
Temperature (F.)		57	64
Date of collection	Nov. 5, 1951	Nov. 5, 1951	Nov. 5, 1951

INDEX

A			_
Aberdeen, S. Dak	Page 337	Baton Rouge, La	Page 212_214
Aberdeen, Wash	432	Baytown, Tex.	351
Abilene, Tex.	346-347	Beatrice, Nebr	271
Acidity, causes relation to pH	11	Beaumont, Tex.	351-352
Acids, corrosion	12,41	Bellaire, Tex. Bell, Calif.	88
mine-drainage	8, 10, 37	Bellingham, Wash.	
organic	37	Belmont, Calif	129
water	8,9,11	Bemidji, Minn.	226 329
Aeration, dissolved gases	42	Benton, Ark.	63
iron and manganese	37	Berkeley, Calif	88
tastes and odors	37	Berkeley, Mo.	258
Agua Prieta, Mex	50 374	Bettendorf, Iowa	173 88-90
Alameda, Calif.	84	Beverly Hills, Tex.	416
Alameda, Idaho	154	Big Spring, Tex	
Albam Colif	403 84	Big Spring, Tex., Big Spring Air Force	0.50
Albany, Calif	327	Base	353 260-261
Albert Lea, Minn.	225	Bismarck, N. Dak.	297
Albuquerque, N. Mex	286	Blackfoot, Idaho	154-155
Alexandria, La.	211	Blackwell, Okla.	
Algae, control	30 33 36	Blytheville, Ark	64 214
Alhambra, Calif.	84	Bogalusa, La	42
Alice, Tex.	347-348	Boise, Idaho	155
Alisal, Calif.	85	Boone, Iowa	
Alkalinity, and coagulation	35 10	Borger, Tex.	355 214
corrosion11,		Bossier City, La	280
hardness	13	Boulder, Colo.	146
pH	11	Bozeman, Mont.	
Alliance, Nebr	270 68	Brainerd, Minn.	227
Altamont, Oreg.	327	Bremerton, Wash	258
Altus, Okla.	305-306	Brigham City, Utah	421
Alum	34	Brookings, S. Dak	338
Amarillo, Tex	348-349 166	Brownsville, Tex	356
Ammonia	36,37	Brownwood, Tex	357 358
Amphitheater, Ariz	50	Bryn Mawr, Calif	122
Anaconda, Mont.	260	Burbank, Calif	90-91
Arcadia, Calif	86 362	Burley, Idaho	156
Ardmore, Okla.	306	Burlingame, Calif	91 167
Arizona	50-61	Butte, Mont.	
Arkadelphia, Ark	62		
Arkansas City, Kans.	62-83 191	С	
Artesia, N. Mex.	287	Caldwell, Idaho	156-157
Astoria, Oreg	327-328	California	84-145
Astoria, Oreg., Tongue Point Naval Station	905	Camden, Ark	64-65
Atchison, Kans.	327 191-192	Cammack Village, Ark	72 68
Atherton, Calif.	129	Camp Chaffee, Ark	242
Aurora, Colo.	146	Carbon, activated	37
Austin Tor	225-226	Carbon dioxide, corrosion	11,12
Austin, Tex. Avondale, Mo	350 247	pHsolution of carbonates	11 9
3.00		Carlsbad, N. Mex.	
В	ļ	Carmel, Calif	112
Bacteria drinking water	22 25 40	Carson City, Nev	
foods and beverages	33, 35, 40	Carthage, Mo	
stored water	33	Carver Park, Nev	282 448
Baker, Oreg	328	Cation exchange, iron and manganese	
Bakersfield, Calif	87	removal	37
Bald Knob, Ark	79 307	Softening	38,45
Bastrop, La.	212	Cedar Bayou, Tex	351 421-422
Batesville, Ark.	62-63	Cedar Falls, Iowa	168

 Cedar Bayou, Tex.
 351

 Cedar City, Utah
 421-422

 Cedar Falls, Iowa
 168

	Page	E	
Cedar Rapids, Iowa	. 168-169		
Centerville, Iowa	. 169-170		Page
Centerville, Mont	. 262	Eagle Point, Oreg	332
Central City, S. Dak		East Bakersfield, Calif	95
Central Point, Oreg		East Los Angeles, Calif	96
Chanute, Kans.		Eastside, Oreg	329
Charles City, Iowa		Edgewater, Colo	147
Cherokee, Iowa		Edina, Minn.	228
		Edinburg, Tex.	366
Chevenne, Wyo Mayren Air Boss			96
Cheyenne, Wyo., Warren Air Base		El Cerrito, Calif	
Chickasha, Okla		El Dorado, Ark	66
Chlorine dioxide		El Dorado, Kans	194
Chlorine, disinfection	. 36	Elko, Nev	281
tastes and odor control	. 37	El Paso, Tex	367-368
Chula Vista, Calif	. 91	El Reno, Okla	311-312
Clarkwood, Tex		Ely, Nev.	282
Clay County, Mo		Emporia, Kans	
Clayton, Mo.		Englewood, Colo.	150
		Enid, Okla.	
Cleburne, Tex.			312
Clinton, Iowa		Enid, Okla., Vance Air Force Base	
Clovis, N. Mex.		Equivalent per million	170
Coagulants	. 34	Estherville, Iowa	176
Cockrell Hill, Tex	. 362	Eugene, Oreg	
Cody, Wyo	449-450	Eureka, Calif	96-97
Coeur D'Alene, Idaho	. 157-158	Evanston, Wyo	450 -4 51
Coffeyville, Kans		Everett, Wash	
Colorado		,	
Colorado Springs, Colo.		, F	
		* *	
Colorado Springs, Colo., Camp Carson .		Fairfield, Iowa	176_177
Colorado Springs, Colo., Peterson Field			
Columbia, Mo		Fargo, N. Dak	
Columbus, Nebr		Faribault, Minn	229
Combs, Ark	. 66	Farmington, Ark	66
Compton, Calif	. 92	Fayetteville, Ark	66-67
Concord, Calif	. 92	Fergus Falls, Minn	229-230
Contra Costa District, Calif		Ferguson, Mo	244
Conway, Ark		Flagstaff, Ariz	50-51
Coos Bay, Oreg.		Flocculation	35
Coralville, Iowa		Forrest City, Ark	67-68
		Fort Collins, Colo.	150
Coronado, Calif		Fort Collins, Colo	
Corpus Christi, Tex.		Fort Dodge, Iowa	
Corrosion, anodic inhibitors		Fort Logan, Colo	147
boiler	. 12,41	Fort Madison, Iowa	
cathodic protection	. 12	Fort Scott, Kans	195-196
causes	. 12	Fort Sill, Okla	314
natural waters	. 8	Fort Smith, Ark	68-69
pH		Fort Worth, Tex	368-369
prevention		Fremont, Nebr	272
treated water		Fresno, Calif	97-98
Corsicana, Tex.		Fulton, Mo.	244
		ruiton, Mo.	
Corvallis, Oreg.		G	
Croston Iowa		ď	
Creston, Iowa		Caba and the Man	270
Crockett, Calif		Gainesville, Tex	370
Crowley, La.		Gallup, N. Mex	289
Culver City, Calif	. 94	Galveston, Tex.	371
Cushing, Okla	309	Garden City, Kans	196
		Garland, Tex	372
ъ .		Glendale, Ariz	51-52
_		Glendale, Calif	98-99
Dallas, Tex	362-363	Globe, Ariz	52-53
Daly City, Calif		Grafton, N. Dak.	299
			300
Davenport, Iowa		Grand Forks, N. Dak	273
			150-151
Del Mar, Calif	. 127	Grand Dunction, Colo	373
Del Rio, Tex.		Grand Prairie, Tex.	
Denison, Tex.		Grandview, Mo	247
Dental caries		Great Bend, Kans	190-197
Denton, Tex		Great Falls, Mont	263 - 264
Denver, Colo		Greeley, Colo	
Des Moines, Iowa		Greenland, Ark	
Detergents		Green River, Wyo	454
Dickinson, N. Dak.		Greenville, Tex	374
Dodge City, Kans		Greenville, Tex., Major Airfield	374
Douglas, Ariz.		Greggton, Tex.	382
Dubuque, Iowa		Gretna, La.	
		Griffing Park, Tex.	401
Duluth, Minn.			179
Duncan, Okla.		Grinnell, Iowa	313
Durant, Okla	. 311	Guthrie, Okla	010

459

H L

	Page	Pa	zе
Hannibal, Mo		Ladue, Mo 2	58
Harahan, La.	217		18
Hardness, carbonate, noncarbonate	9,12		32
causes	12	Lake Charles, La	
classification of waters	21		01
Great Lakes	16		80
industrial use of water	13,41	Laramie, Wyo451-4	
soap consumption	38,45		81
Harlingen, Tex	375	Las Cruces, N. Mex290-2	<i>3</i> 1
Hastings, Nebr			83
Havre, Mont.		Las Vegas, N. Mex	
Hawthorne, Calif	99-100	Lawrence, Kans	
Helena, Ark.	69-70		00 1 =
Helena, Mont.	265	Lawton, Okla	39
Henderson, Nev.	282	Lead, S. Dak	
Henryetta, Okla	314		87
Hermosa Beach, Calif	122		47
Hibbing, Minn.		Lewiston, Idaho	
Highland Park, Tex	376	Lewistown, Mont	66
Holladay Wah			36
Holliday, Utah	427	softening 38,	
Holliday, Tex	420 70-71	Limestone	٠9
Hope, Ark	435		75
Hot Springs, Ark	71	Little Rock, Ark 72-	
Houma, La.			67
Houston, Tex.			22
Huntington Park, Calif.			22
Huntsville, Mo	251		02
Huron, S. Dak.		Longmont, Colo 1	52
Hutchinson, Kans	197-198		82
,		Longview, Wash	37
I			07
		Los Angeles, Calif103-1	
Idaho	154-165		32
Idaho Falls, Idaho	158-159	Louisiana	
Independence, Kans	198	Lubbock, Tex383-3	
Independence, Mo	245	Lufkin, Tex 3	85
Inglewood, Calif	101-102		06
Inglewood, Calif	101-102 166-190	Lynwood, Calif 1	06
Inglewood, Calif	101-102 166-190		06
Inglewood, Calif. Iowa Iowa City, Iowa	101-102 166-190	Lynwood, Calif	
Inglewood, Calif	101-102 166-190	McAlester, Okla	16
Inglewood, Calif. Iowa Iowa City, Iowa J	101-102 166-190 179-180	McAlester, Okla	16 86
Inglewood, Calif. Iowa	101-102 166-190 179-180	M McAlester, Okla	16 86 76
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak.	101-102 166-190 179-180 247 301	M McAlester, Okla	16 86
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo.	101-102 166-190 179-180 247 301 245-246	Lynwood, Calif. 1 M M McAlester, Okla. 315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2	16 86 76 87
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La.	101-102 166-190 179-180 247 301 245-246 217	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3	16 86 76 87 02 40
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo.	101-102 166-190 179-180 247 301 245-246 217 246	Lynwood, Calif. 1 M M McAlester, Okla. 315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73-	16 86 76 87 02 40 74
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho	101-102 166-190 179-180 247 301 245-246 217 246 159	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. 3 McCook, Nebr. 22 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73-	16 86 76 87 02 40 74
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark.	101-102 166-190 179-180 247 301 245-246 217 246	Lynwood, Calif. 1 M M McAlester, Okla. 315-3 McClok, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73- Malvern, Ark. 74- Mandan, N. Dak. 301-3 Manhattan Beach, Calif. 1	16 86 76 87 02 40 74 75 02
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho	101-102 166-190 179-180 247 301 245-246 217 246 159 66 71-72	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73- Malvern, Ark. 74- Mandan, N. Dak. .301-3 Manhattan Beach, Calif. 1 Manhattan, Kans. 2	16 86 76 87 02 40 75 02 07
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark.	101-102 166-190 179-180 247 301 245-246 217 246 159 66 71-72	M M McAlester, Okla. .315-3 McAllen, Tex. .3 McCook, Nebr. .2 McKinney, Tex. .3 McPherson, Kans. .2 Madison, S. Dak. .3 Magnolia, Ark. .73- Malvern, Ark. .74- Mandan, N. Dak. .301-3 Manhattan Beach, Calif. .1 Manhattan, Kans. .2 Mankato, Minn. .2	16 86 76 87 02 40 74 02 07 03
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo.	247 301 245-246 217 246 159 66 71-72 246-247	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. .3 McCook, Nebr. .2 McKinney, Tex. .3 McPherson, Kans. .2 Madison, S. Dak. .3 Magnolia, Ark. .73- Malvern, Ark. .74- Mandan, N. Dak. .301-3 Manhattan Beach, Calif. .1 Manhattan; Kans. .2 Mankato, Minn. .2 Maplewood, Mo. .2	16 86 76 87 02 40 74 03 31
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans.	247 301 245-246 217 246-25 159 66 71-72 246-247 79	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73- Malvern, Ark. 74- Mandan, N. Dak. .301-3 Manhattan Beach, Calif. 1 Manhattan, Kans. 2 Mankato, Minn. 2 Maplewood, Mo. 2 Marshall, Tex. 3	16 86 87 02 40 74 75 02 07 03 31
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark.	247 301 245-246 217 246-25 159 66 71-72 246-247 79	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. .3 McCook, Nebr. 2 McKinney, Tex. .3 McPherson, Kans. .2 Madison, S. Dak. .3 Magnolia, Ark. .73- Malvern, Ark. .74- Mandan, N. Dak. .301-3 Manhattan Beach, Calif. .1 Manhattan, Kans. .2 Mankato, Minn. .2 Marshall, Tex. .3 Marshalltown, Iowa .181-1	16 86 87 02 40 74 75 02 07 03 31 88 82
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K	101-102 166-190 179-180 247 301 245-246 217 246 159 66 71-72 246-247 79 199	Lynwood, Calif. 1 M McAlester, Okla. .315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73- Mandyern, Ark. 74- Mandan, N. Dak. .301-3 Manhattan Beach, Calif. 1 Manhattan, Kans. 2 Mankato, Minn. 2 Maplewood, Mo. 2 Marshall, Tex. 3 Marshalltown, Iowa .181-1 Mason City, Iowa 1	16 86 87 02 40 74 75 02 07 03 31 50 82 82
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jenome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont.	101-102 166-190 179-180 247 301 245-246 217 246 159 66 71-72 246-247 79 199	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. .3 McCook, Nebr. 2 McKinney, Tex. .3 McPherson, Kans. 2 Madison, S. Dak. .3 Magnolia, Ark. .73- Malvern, Ark. .74- Mandan, N. Dak. .301-3 Manhattan Beach, Calif. .1 Manhattan, Kans. .2 Mankato, Minn. .2 Marehall, Tex. .3 Marshalltown, Iowa .181-1 Mason City, Iowa .1 Meaderville, Mont. .2	16 86 76 87 02 40 74 75 02 07 03 31 50 88 82 62
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas	101-102 166-190 179-180 247 301 245-246 217 246-247 71-72 246-247 79 199	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73- Malvern, Ark. 74- Mandan, N. Dak. 301-3 Manhattan Beach, Calif. 1 Manhattan, Kans. 2 Mankato, Minn. 2 Marshall, Tex. 3 Marshalltown, Iowa 181-1 Mason City, Iowa 1 Meaderville, Mont. 2 Medford, Oreg. 332-3	16 86 76 87 02 40 74 75 03 31 50 82 82 82 82
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Jonesboro, Ark. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans.	247 301 245-246 217 246 159 66 71-72 246-247 79 199	M M McAlester, Okla. .315-3 McAllen, Tex. .3 McCook, Nebr. .2 McKinney, Tex. .3 McPherson, Kans. .2 Madison, S. Dak. .3 Magnolia, Ark. .73- Malvern, Ark. .74- Mandadan, N. Dak. .301-3 Manhattan Beach, Calif. .1 Manhattan, Kans. .2 Mankato, Minn. .2 Maplewood, Mo. .2 Marshall, Tex. .3 Marshalltown, Iowa .181-1 Mason City, Iowa .1 Meddord, Oreg. .332-3 Medicine Park, Okla. .3	16 86 76 87 02 40 74 75 02 03 15 82 82 82 82 33
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jenome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas City, Kans. Kansas City, Kans. Kansas City, Mo.	101-102 166-190 179-180 247 301 245-246 217 246 159 66 71-72 246-247 79 199	M	16 86 76 87 02 40 74 75 02 07 03 15 82 82 82 33 14 29
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kansas City, Mo. Kearney, Nebr.	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 274	Lynwood, Calif. 1 M M McAlester, Okla. .315-3 McAllen, Tex. 3 McCook, Nebr. 2 McKinney, Tex. 3 McPherson, Kans. 2 Madison, S. Dak. 3 Magnolia, Ark. 73- Malvern, Ark. 74- Mandan, N. Dak. 301-3 Manhattan Beach, Calif. 1 Manhattan, Kans. 2 Marshall, Tex. 3 Marshall, Tex. 3 Marshalltown, Iowa 181-1 Meaderville, Mont. 2 Medford, Oreg. 332-3 Medicine Park, Okla. 3 Menlo Park, Calif. 1 Mentone, Calif. 1	16 86 76 87 02 40 74 75 02 07 03 13 14 29 22
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kansas City, Kans. Kearney, Nebr. Kellogg, Idaho	247 301 245-246 217 246-159 66 71-72 246-247 79 199 266 191-210 199-20c 247-248 274 160	M McAlester, Okla	16 86 87 02 40 74 75 03 31 50 82 82 62 33 14
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jennings, Mo. Jenome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas City, Kans. Kansas City, Kans. Kansas City, Mo. Kearney, Nebr. Kellogg, Idaho Kenner, La.	101-102 166-190 179-180 247 301 245-246 217 246 159 66 71-72 246-247 79 199 266 191-210 199-20C 247-248 274 160 217	M	16 86 76 87 02 40 74 03 1 50 88 82 82 82 82 82 88 88 88 88 88 88 88
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kearney, Nebr. Kellogg, Idaho Kennewick, Wash.	101-102 166-190 179-180 247 301 245-246 217 246-159 66 71-72 246-247 79 199 266 191-210 199-200 247-248 274 160 217 436	M	16 86 76 87 02 40 74 03 1 50 88 82 82 82 82 82 88 88 88 88 88 88 88
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kansas City, Kans. Kearney, Nebr. Kellogg, Idaho Kenner, La. Kennewick, Wash. Keokuk, Iowa	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 274 160 217 436 180-181	M McAlester, Okla	16 86 76 87 02 40 74 75 02 07 03 13 14 29 22 89 54
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jennings, Mo. Jenome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Mo. Kearney, Nebr. Kellogg, Idaho Kenner, La. Kennewick, Wash. Keokuk, Iowa Kingswille, Tex.	101-102 166-190 179-180 247 301 245-246 217 246 159 66 71-72 246-247 79 199 266 191-210 199-20C 247-248 274 160 217 436 180-181 379	M McAlester, Okla	16 86 76 87 02 40 74 75 02 07 03 15 08 82 82 82 82 82 17 10 10 10 10 10 10 10 10 10 10 10 10 10
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jerome, Idaho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kenser, Nebr. Kellogg, Idaho Kenner, La. Kennewick, Wash. Keokuk, Iowa Kinjseville, Tex. Kinlock, Mo.	101-102 166-190 179-180 247 301 245-246 217 246-159 66 71-72 246-247 79 199 266 191-210 199-200 247-248 274 160 217 436 180-181 379 258	M	16 86 76 87 02 40 74 75 02 07 03 15 08 82 82 82 82 82 17 10 10 10 10 10 10 10 10 10 10 10 10 10
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jennings, Mo. Jenoseboro, Ark. Jonesboro, Ark. Jonesboro, Ark. Jonin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kansas City, Kans. Kearney, Nebr. Kellogg, Idaho Kenner, La. Kennewick, Wash. Keokuk, Iowa Kingswille, Tex Kinlock, Mo. Kirkswille, Mo. Kirkswille, Mo.	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 217 436 180-181 379 258 248-249	M	16 86 76 87 02 07 03 15 03 14 29 22 89 54 17 10 10 10 10 10 10 10 10 10 10 10 10 10
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jefferson Haho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Mo. Kearney, Nebr. Kellogg, Idaho Kearney, Nebr. Kellogg, Idaho Kenner, La. Kennewick, Wash. Keokuk, Iowa Kingsville, Tex. Kinlock, Mo. Kirksville, Mo. Kirksville, Mo. Kirksville, Mo. Kirksvood, Mo. Klamath Falls, Oreg.	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 217 436 180-181 379 258 248-249	M	16 86 87 87 02 40 74 75 02 07 03 18 82 82 82 82 82 83 14 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jennings, Mo. Jenoseboro, Ark. Jonesboro, Ark. Jonesboro, Ark. Jonin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kelnogs, Jdaho Kearney, Nebr. Kellogg, Jdaho Kenner, La. Kennewick, Wash. Keokuk, Iowa Kingswille, Tex. Kinlock, Mo. Kirkwood, Mo. Kirkswille, Mo. Kirkwood, Mo. Klamath Falls, Oreg. Klamour Iowa Kingowille, Joreg. Klamath Falls, Oreg. Klamath Falls, Oreg.	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 217 436 180-181 379 258 248-249 249-250 331 181	M	168 768 760 774 775 775 775 775 775 775 775 775 775
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jefferson Haho Johnson, Ark. Jonesboro, Ark. Joplin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Mo. Kearney, Nebr. Kellogg, Idaho Keanney, La. Kennewick, Wash. Keokuk, Iowa Kingsville, Tex. Kinlock, Mo. Kirksville, Mo. Kirksville, Mo. Kirksville, Mo. Kirksville, Mo. Kirksvood, Mo. Klamath Falls, Oreg.	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 274 160 247-248 274 160 247-248 274 217 436 180-181 379 258 248-249 249-250 331	M	166 767 767 767 767 768 768 768 768 768 7
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jennings, Mo. Jenoseboro, Ark. Jonesboro, Ark. Jonesboro, Ark. Jonin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kelnogs, Jdaho Kearney, Nebr. Kellogg, Jdaho Kenner, La. Kennewick, Wash. Keokuk, Iowa Kingswille, Tex. Kinlock, Mo. Kirkwood, Mo. Kirkswille, Mo. Kirkwood, Mo. Klamath Falls, Oreg. Klamour Iowa Kingowille, Joreg. Klamath Falls, Oreg. Klamath Falls, Oreg.	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 217 436 180-181 379 258 248-249 249-250 331 181	M	166 767 767 775 767 775 775 775 775 775 7
Inglewood, Calif. Iowa Iowa City, Iowa J Jackson County, Mo. Jamestown, N. Dak. Jefferson City, Mo. Jefferson Parish, La. Jennings, Mo. Jennings, Mo. Jenoseboro, Ark. Jonesboro, Ark. Jonesboro, Ark. Jonin, Mo. Judsonia, Ark. Junction City, Kans. K Kalispell, Mont. Kansas Kansas City, Kans. Kansas City, Kans. Kelnogs, Jdaho Kearney, Nebr. Kellogg, Jdaho Kenner, La. Kennewick, Wash. Keokuk, Iowa Kingswille, Tex. Kinlock, Mo. Kirkwood, Mo. Kirkswille, Mo. Kirkwood, Mo. Klamath Falls, Oreg. Klamour Iowa Kingowille, Joreg. Klamath Falls, Oreg. Klamath Falls, Oreg.	101-102 166-190 179-180 247 301 245-246 217 246-247 79 199 266 191-210 199-200 247-248 217 436 180-181 379 258 248-249 249-250 331 181	M	16866876688776297697688822220888954171068882222888974332

460 INDEX

Page	Page
Minot, N. Dak	Palo Alto, Calif118-119
Mission, Tex	Pampa, Tex 397
Missoula, Mont	Paragould, Ark 76-77
Missouri	
Mitchell, S. Dak340-341	,,
Moberly, Mo	Parsons, Kans 205
Modesto, Calif	Pasadena, Calif119-120
Monroe, La 219	Pasadena, Tex 399
Monrovia, Calif	Pasco, Wash
	Pear Ridge, Tex 401
Montana	
Montebello, Calif	
Monterey, Calif 112	Pend Oreille, Idaho 164
Monterey Park, Calif	Peniel, Tex 374
Moorhead, Minn 233	Philomath, Oreg 330
Morenci, Ariz 54	Phoenix, Ariz 55-57
Morningside, Iowa	Pierre, S. Dak
	Pine Bluff, Ark 77-78
Moscow, Idaho161-162	
Mottled enamel 10,39	Pine Lawn, Mo
Mountainburg, Ark 68	Pittman, Nev
Mountain View, Colo 147	Pittsburg, Kans
Murray, Utah 423	Plainview, Tex 400
Muscatine, Iowa182-183	Pluma, S. Dak
Muskogee, Okla 318	Pocatello, Idaho 164
3"	
N	
	Poplar Bluff, Mo
Nacogdoches, Tex 392	Portales, N. Mex
Nampa, Idaho	Port Angeles, Wash
National City, Calif	Port Arthur, Tex 401
Nebraska	Port Chicago, Calif 92
Nettleton, Ark	
Nevada280-285	
New Braunfels, Tex 393	Price, Utah
New Iberia, La 220	Proctor, Minn 227
New Mexico286-296	Provo, Utah
New Orleans, La220-221	Pueblo, Colo
Newport, Ark 75-76	Pueblo, Colo., Pueblo Air Force Base 152
Newton, Iowa 183	Pullman, Wash 439
Newton, Kans 204	
	R
Nogales, Ariz 54-55	n
Nogales, Ariz 54-55 Norfolk Nebr 276-277	ĸ
Norfolk, Nebr	
Norfolk, Nebr	Rapid City, S. Dak 342
Norfolk, Nebr	Rapid City, S. Dak. 342 Raton, N. Mex. 293
Norfolk, Nebr	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453
Norfolk, Nebr	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374
Norfolk, Nebr	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123
Norfolk, Nebr	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. 318-319 North Bend, Oreg. 328 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. 318-319 North Bend, Oreg. 328 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Rediands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. 318-319 North Bend, Oreg. 328 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 244 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 224 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Lax Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 264 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124 Richmond Heights, Mo. 253
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. 1318-319 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Oklahoma 305-326	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redowod City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124 Richmond Heights, Mo. 253 Riverside, Calif. 124-125
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla. 319-320	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 224 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. 1318-319 Norman, Okla. 1318-319 North Bend, Oreg. 329 North Dakota 297-304 North Lax Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Delwein, Iowa 183-184 Diddale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla. 319-320 Okmulgee, Okla. 320	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. 1318-319 North Bend, Oreg. 329 North Dakota 297-304 North Little Rock, Ark. 76 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla. 320 Dlmos Park, Tex. 403	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 264 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Robe, Tex. 407
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. 1318-319 North Bend, Oreg. 329 North Dakota 297-304 North Little Rock, Ark. 76 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla. 320 Dlmos Park, Tex. 403	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redonod City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Rochester, Minn. 235-236
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-294 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla. 320 Dkmulgee, Okla. 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redonod City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Rochester, Minn. 235-236
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla. 319-320 Okmulgee, Okla. 320 Olmos Park, Tex. 403 Dlympia, Wash. 437 Omaha, Nebr. 278 Ontario, Calif. 116-117	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redonod City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Rochester, Minn. 235-236
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437 Dmaha, Nebr 278 Dntario, Calif. 116-117 Dpelousas, La 221-222	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 264 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Robe, Tex. 407
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma. 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Delwein, Iowa 183-184 Diddale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla. 320 Dkmulgee, Okla. 320 Dkmulgee, Okla. 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437 Dmaha, Nebr. 278 Dntario, Calif. 116-117 Dpelousas, La. 221-222 Drange, Tex. 395	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robe, Tex. 407 Rochester, Minn. 235-236 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 229 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Delwein, Iowa 183-184 Diddale, Calif. 115-116 Oklahoma 305-326 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla 319-320 Okmulgee, Okla 320 Olmos Park, Tex. 403 Olympia, Wash. 437 Olympia, Wash. 437 Omaha, Nebr. 278 Ontario, Calif. 116-117 Opelousas, La 221-222 Orange, Tex. 395 Orchards, Idaho 163	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redondo City, Calif. 123-124 Reno, Nev. 224 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverron, Wyo. 453 Robbinsdale, Minn. 235 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex. 403 Dlympia, Wash 437 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 395 Dratario, Calif. 116-117 Dpelousas, La 221-222 Drange, Tex. 395 Drchards, Idaho 163 Dregon 327-336	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robe, Tex. 407 Rochester, Minn. 235-236 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Delwein, Iowa 183-184 Diddale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla. 327 Oklamio, Oklaf. 327 Oklamio, Oklaf. 327 Oklamio, Oklaf. 327 Oklamio, Oklaf. 327 Oklamio, 32	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robe, Tex. 407 Rochester, Minn. 235-236 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 229 North Dakota 297-304 North Lax Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Delwein, Iowa 183-184 Diddale, Calif. 115-116 Oklahoma 305-326 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla 320 Okmulgee, Okla 320 Olmos Park, Tex. 403 Olympia, Wash. 437 Omaha, Nebr. 278 Ontario, Calif. 116-117 Opelousas, La 221-222 Orange, Tex. 395 Orchards, Idaho 163 Oregon 327-336 Oregon 327-336 Orben, Utah 425 Osburn, Idaho 160	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122 Redondo Beach, Calif. 122-123 Red Wing, Minn. 234 Redondo City, Calif. 123-124 Reno, Nev. 224 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverron, Wyo. 453 Robbinsdale, Minn. 235 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 127 Dpelousas, La 221-222 Drange, Tex. 395 Drehards, Idaho 163 Drègon 327-336 Drem, Utah 425 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160 Dsburn, Idaho 160	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redalands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 264 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124 Riverside, Calif. 124-125 Riverside, Guif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Robe, Tex. 407 Rochester, Minn. 235-236 Rosk Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Ruston, La. 222
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Bend, Oreg. 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark 76 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmungee, Okla. 320 Okla	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 294 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverside, Iowa 187 Riverton, Wyo. 453 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 S Sabine Pass, Tex. 401
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-294 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Diddale, Calif. 115-116 Dklahoma 3305-326 Dklahoma City, Okla. 319-320 Dkmuigee, Okla. 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437 Dmaha, Nebr. 278 Dmaha, Nebr. 278 Dmaha, Nebr. 278 Drange, Tex. 395 Dreange, Tex. 395 Dreange, Tex. 395 Dreange, Tex. 395 Drechards, Idaho 163 Dregon 327-336 Drem, Utah 425 Dsburn, Idaho 160 Dskaloosa, Iowa 184-185 Dtum, Idaho 160 Dskaloosa, Iowa 184-185 Dtum, Idaho 160 Dskaloosa, Iowa 185-186	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverron, Wyo. 453 Robbinsdale, Minn. 235 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 S Sabine Pass, Tex. 401 Sacramento, Calif. 125-126
Norfolk, Nebr. 276-277 Norman, Okla. University of Oklahoma 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla 320 Olmos Park, Tex. 403 Olympia, Wash. 437 Omaha, Nebr 278 Omaha, Nebr 278 Omaha, Nebr 161 Opelousas, La 221-222 Orange, Tex. 395 Orehards, Idaho 163 Oregon 327-336 Orem, Utah 425 Osburn, Idaho 163 Oregon 327-336 Orem, Utah 425 Osburn, Idaho 160 Oskaloosa, Iowa 184-185 Ottumwa, Iowa 185-186 Ottumwa, Iowa 195-186 Ottumwa, Iowa 195-186 Ottumwa, Iowa 195-186 Ottumwa, Iowa 195-186	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Colif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Ruston, La. 222 Sabine Pass, Tex. 401 Sacramento, Calif. 125-126 St. Charles, Mo. 253-253-253
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmungee, Okla. 320 Okl	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverside, Iowa 187 Riverton, Wyo. 453 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 S Sabine Pass, Tex. 401 Sacramento, Calif. 125-126 St. Charles, Mo. 253-254 St. Cloud, Minn. 236
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 229 North Dakota 297-304 North Lax Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Delwein, Iowa 183-184 Didale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla 320 Okmulgee, Okla 320 Okmulgee, Okla 320 Olmos Park, Tex 403 Olympia, Wash 437 Omaha, Nebr 278 Ontario, Calif. 116-117 Opelousas, La 221-222 Orange, Tex. 395 Orchards, Idaho 163 Orègon 327-336 Orègon 327-336 Orègon 164-185 Osburn, Idaho 160 Oskaloosa, Iowa 184-185 Ottawa, Kans. 204-205 Ottawa, Kans. 204-205 Ottumwa, Iowa 185-186	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redalands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 122-124 Reno, Nev. 224 Renton, Wash. 439-440 Reservoirs cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187 Robbinsdale, Minn. 235 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 Sabjne Pass, Tex. 401
Norfolk, Nebr. 276-277 Norman, Okla. University of Oklahoma 318-319 Norman, Okla., University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 127 Dpelousas, La 221-222 Drange, Tex. 395 Drehards, Idaho 163 Drègon 327-336 Drem, Utah 425 Dsburn, Idaho 160 Dskaloosa, Iowa 184-185 Dtawa, Kans. 204-205 Dtumwa, Iowa 185-186 Dverland, Mo. 252 Dwatorla, Minn. 233-234 Dxnard, Calif. 117-118	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redalands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Ruston, La. 222 Sabine Pass, Tex. 401 Sacramento, Calif. 125-126 St. Charles, Mo. 253-254 St. Joseph, Mo. 255-256 St. Louis, Mo. 255-255
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla. University of Oklahoma 318 North Bend, Oreg. 329 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Odessa, Tex. 394 Delwein, Iowa 183-184 Ogden, Utah 424 Dildale, Calif. 115-116 Oklahoma 305-326 Oklahoma City, Okla 319-320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmulgee, Okla. 320 Okmungee, Okla. 320 Okl	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 284 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverside, Iowa 187 Robe, Tex. 407 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 S S Sabine Pass, Tex. 401 Sacramento, Calif. 125-126 St. Cloud, Minn. 236 St. Louis, Mo. 254-255 St. Louis, Mo. 255-256 St. Louis Park, Minn. 235
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-294 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Diddale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex 403 Dlmos Park, Tex 403 Dlmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 116-117 Dpelousas, La 221-222 Drange, Tex. 395 Dredn, Utah 425 Drange, Tex. 395 Dredn, Utah 163 Dregon 327-336 Drem, Utah 425 Dsburn, Idaho 163 Dregon 327-336 Drem, Utah 425 Dsburn, Idaho 160 Dskaloosa, Iowa 184-185 Dttawa, Kans. 204-205 Dttumwa, Kans. 205 Dwatonna, Minn 233-234 Dwarard, Calif. 117-118	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redalands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 122-124 Reno, Nev. 224 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverside, Iowa 187 Riverside, Iowa 187 Riverside, Minn. 235 Robe, Tex. 407 Rock Springs, Wyo. 454 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 S Sabine Pass, Tex. 401 Sacramento, Calif. 125-126
Norfolk, Nebr. 276-277 Norman, Okla. 318-319 Norman, Okla., University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-294 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Diddale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex 403 Dlmos Park, Tex 403 Dlmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 116-117 Dpelousas, La 221-222 Drange, Tex. 395 Dredn, Utah 425 Drange, Tex. 395 Dredn, Utah 163 Dregon 327-336 Drem, Utah 425 Dsburn, Idaho 163 Dregon 327-336 Drem, Utah 425 Dsburn, Idaho 160 Dskaloosa, Iowa 184-185 Dttawa, Kans. 204-205 Dttumwa, Kans. 205 Dwatonna, Minn 233-234 Dwarard, Calif. 117-118	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redalands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 122-124 Reno, Nev. 224 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond, Calif. 124-125 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverside, Iowa 187 Riverside, Iowa 187 Riverside, Minn. 235 Robe, Tex. 407 Rock Springs, Wyo. 454 Rock Springs, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 S Sabine Pass, Tex. 401 Sacramento, Calif. 125-126
Norfolk, Nebr. 276-277 Norman, Okla. University of Oklahoma 318-319 Norman, Okla., University of Oklahoma 318 North Bend, Oreg. 329 North Dakota 297-304 North Las Vegas, Nev. 283-284 North Little Rock, Ark. 76 North Platte, Nebr. 277 O Dakland, Calif. 114-115 Ddessa, Tex. 394 Delwein, Iowa 183-184 Dgden, Utah 424 Dildale, Calif. 115-116 Dklahoma 305-326 Dklahoma City, Okla 319-320 Dkmulgee, Okla 320 Dlmos Park, Tex. 403 Dlympia, Wash. 437 Dmaha, Nebr 278 Dmaha, Nebr 278 Dmaha, Nebr 127 Dpelousas, La 221-222 Drange, Tex. 395 Drehards, Idaho 163 Drègon 327-336 Drem, Utah 425 Dsburn, Idaho 160 Dskaloosa, Iowa 184-185 Dtawa, Kans. 204-205 Dtumwa, Iowa 185-186 Dverland, Mo. 252 Dwatorla, Minn. 233-234 Dxnard, Calif. 117-118	Rapid City, S. Dak. 342 Raton, N. Mex. 293 Rawlins, Wyo. 452-453 Reavilon, Tex. 374 Redlands, Calif. 122-123 Red Wing, Minn. 234 Redwood City, Calif. 123-124 Reno, Nev. 264 Renton, Wash. 439-440 Reservoirs, cleaning 34 water quality 33 Richland, Wash. 440-441 Richmond Heights, Mo. 253 Riverside, Calif. 124-125 Riverside, Iowa 187 Riverton, Wyo. 453 Robbinsdale, Minn. 235 Rock Frings, Wyo. 454 Roseburg, Oreg. 334-335 Roswell, N. Mex. 293-294 Russellville, Ark. 78 Ruston, La. 222 S Sabine Pass, Tex. 401 Sacramento, Calif. 125-126 St. Charles, Mo. 253-254 St. Louis, Mo. 254-255 St. Louis Park, Minn. 237-238

	Dago		Page
	Page	Suspended matter consulation	34
Salinas, Calif.	85	Suspended matter, coagulation	44
Salt Lake City, Utah		process water	
San Angelo, Tex.	402	reservoirs	30,33
San Angelo, Tex., Goodfellow Air Force		sedimentation	34
Base	402	turbidity	11
San Antonio, Tex403		Sweetwater, Tex	407
San Antonio, Tex., Brooks Air Force Base	403		
San Benito, Tex	404	T	
San Bernardino, Calif	3-127		
San Carlos, Calif	129	Tacoma, Wash4	43-444
San Diego, Calif	7-128	Tempe, Ariz	58
Sandpoint, Idaho164		Temple, Tex	408
San Francisco, Calif		Temple, Tex., McCloskey Hospital	408
San Francisco, Calif., Moffett Field	129	Terraville, S. Dak	339
San Gabriel, Calif		Terrell Hills, Tex	403
San Jose, Calif		Terrell, Tex.	409
	133	Texarkana, Ark.	81-82
San Leandro, Calif.		Texarkana, Tex.	410
San Mateo, Calif	133	Texas3	
San Ramon Valley, Calif	92		411
Santa Ana, Calif		Texas City, Tex.	
Santa Barbara, Calif		Tooele, Utah4	00 9 00
Santa Cruz, Calif	136	Topeka, Kans2	
Santa Fe, N. Mex		Topeka, Kans., Forbes Air Base	207
Santa Monica, Calif	137	Torrance, Calif 1	
Santa Rosa, Calif	7-138	Trinidad, Colo	153
Sapulpa, Okla	322	Tucson, Ariz	58-59
Scale, boiler 1	13,41	Tucumcari, N. Mex	296
calcium and magnesium	9,41	Tulsa, Okla	326
prevention	42	Turley, Okla	326
	8,41	Twin Falls, Idaho	165
sulfate	10	Tyler, Tex4	11-413
Scottsbluff, Nebr	279	-,,	
Searcy, Ark.	79	U	
		· ·	
Seattle, Wash441		University City, Mo	58-259
Sedalia, Mo			179
Seminole, Okla.	323	University Heights, Iowa	413
Shawnee, Okla	324	University Park, Tex	
Shenandoah, Iowa	186	Utah4	21-431
Sheridan, Colo	147		
Sheridan, Wyo	147 455	v	
		v	
Sheridan, Wyo	455	Vallejo, Calif	143
Sheridan, Wyo	455 405		
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La., Barksdale Field	455 405 223	Vallejo, Calif	
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La., Barksdale Field Shrewsbury, La.	455 405 223 223 217	Vallejo, Calif. Valley City, N. Dak	03-304
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La., Barksdale Field Shrewsbury, La. Sikeston, Mo.	455 405 223 223 217 257	Vallejo, Calif. Valley City, N. Dak	03-304 82
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La., Barksdale Field Shrewsbury, La. Sikeston, Mo. Silica, activated	455 405 223 223 217 257 8,34	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif.	03-304 82 445
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La., Barksdale Field Shrewsbury, La. Sikeston, Mo. Silica, activated removal	455 405 223 223 217 257 8,34 8,41	Vallejo, Calif. Valley City, N. Dak	03-304 82 445 144 343
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La., Barksdale Field Shrewsbury, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont.	455 405 223 223 217 257 8,34 8,41 262	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex.	03 -304 82 445 144
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa	455 405 223 223 217 257 8,34 8,41 262 187	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex. Victoria, Tex.	03-304 82 445 144 343 415 414
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. 342	455 405 223 223 217 257 8,34 8,41 262 187 2-343	Vallejo, Calif. Valley City, N. Dak	03-304 82 445 144 343 415 414 282
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shrewsbury, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla.	455 405 223 223 217 257 8,34 8,41 262 187 2-343 326	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex. Victoria, Tex.	03-304 82 445 144 343 415 414
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sludge.	455 405 223 223 217 257 8,34 8,41 262 187 2-343 326 38	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn.	03-304 82 445 144 343 415 414 282
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho	455 405 223 223 217 257 8,34 8,41 262 187 2-343 326 38	Vallejo, Calif. Valley City, N. Dak	03-304 82 445 144 343 415 414 282
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shrewsbury, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex.	455 405 223 223 217 257 8,34 8,41 262 187 2-343 326 38 160 406	Vallejo, Calif. Valley City, N. Dak	82 445 144 343 415 414 282 239
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sludge Smelterville, Idaho Snyder, Tex. South Dakota 333	455 405 223 223 217 257 8,34 8,41 262 187 2-343 326 38 160 406 7-345	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex.	82 445 144 343 415 414 282 239
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif.	455 405 223 223 217 257 8,34 8,41 262 187 2-343 326 38 160 406 7-345 3-139	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz.	82 445 144 343 415 414 282 239
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. 138 South Pasadena, Calif. 138	455 405 223 223 217 257 8,34 8,41 262 187 2-343 33 36 406 406 406 406 3-139 3-140	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont.	82 445 144 343 415 414 282 239 416 59 262
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sloux Falls, S. Dak. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Pasadena, Calif. South Phoenix, Ariz.	455 405 223 223 217 257 257 267 2-343 38 160 406 (-345 3-139 3-140 55	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vernon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash.	82 445 144 343 415 414 282 239 416 59 262 445-446
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Pasadena, Calif. South Phoenix, Ariz. Southport, La.	455 405 223 223 217 257 8, 34 8, 41 262 187 2-343 326 38 160 406 7-345 3-139 2-140 55 217	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. 4 Vancouver, Wash. 5 Vermillion, S. Dak. 5 Vermon, Tex. 7 Victoria, Tex. 7 Victory Village, Nev. 7 Virginia, Minn. 7 W Waco, Tex. 7 Wakefield, Ariz. 7 Wakefield, Ariz. 7 Walkerville, Mont. 7 Wardner, Idaho 7	416 59 262 445 144 343 415 414 282 239 416 59 262 445 446
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Phoenix, Ariz. South Phoenix, Ariz. South St. Paul, Minn. 238	455 405 223 223 227 8,34 8,41 262 2-343 326 338 160 406 406 55 3-139 2-140 55 217 3-239	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. 4 Vancouver, Wash. 5 Vermillion, S. Dak. 5 Vernon, Tex. 7 Victoria, Tex. 7 Victory Village, Nev. 7 Virginia, Minn. 7 W Waco, Tex. 7 Wakefield, Ariz. 7 Wakefield, Ariz. 7 Wakerville, Mont. 7 Wardner, Idaho 7 Washington 7	103 - 304 82 445 144 343 415 414 282 239 416 59 262 445 - 446 160 132 - 447
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Pasadena, Calif. South Phoenix, Ariz. Southport, La.	455 405 223 223 227 8,34 8,41 262 2-343 326 338 160 406 406 55 3-139 2-140 55 217 3-239	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington 46 Water analyses	103 - 304 82 445 144 343 415 414 282 239 416 59 262 45 - 446 160 132 - 447 50 - 456
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Pasadena, Calif. South Pasadena, Calif. South Pasadena, Calif. South Pasadena, Calif. South Pasadena, Calif. South St. Paul, Minn. South Salt Lake, Utah 428 South Salt Lake, Utah 428 South San Francisco, Calif.	455 405 223 223 223 257 8,34 8,41 262 187 2-343 33 36 406 7-345 3-139 9-140 55 2-329 3-329	Vallejo, Calif. Valley City, N. Dak	416 59 262 445 445 414 282 239 416 59 262 445 446 59 262 45 447 50 45 189
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sidatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Phoenix, Ariz. Southport, La. Southport, La. South St. Paul, Minn. 238 South St. Paul, Minn. 238 South Salt Lake, Utah	455 405 223 223 223 257 8,34 8,41 262 187 2-343 33 36 406 7-345 3-139 9-140 55 2-329 3-329	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington 46 Water analyses	103 - 304 82 445 144 343 415 414 282 239 416 59 262 445 - 446 160 32 - 447 50 - 456 189 344
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sidatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Pasadena, Calif. South Pasadena, Calif. South Phoenix, Ariz. Southport, La. South St. Paul, Minn. South San Francisco, Calif. South San Francisco, Calif. Sparks, Nev. Spencer, Iowa	455 405 223 223 223 257 8, 34 8, 41 262 187 2-343 326 38 160 406 7-345 3-139 3-140 55 3-239 3-239 3-241 284	Vallejo, Calif. Valley City, N. Dak	103 - 304 82 445 144 343 415 414 282 239 416 59 262 45 - 446 160 132 - 447 50 - 456 189 344 417
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sidatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Pasadena, Calif. South Pasadena, Calif. South Phoenix, Ariz. Southport, La. South St. Paul, Minn. South San Francisco, Calif. South San Francisco, Calif. Sparks, Nev. Spencer, Iowa	455 405 223 223 223 257 8, 34 8, 41 262 187 2-343 326 38 160 406 7-345 3-139 3-140 55 3-239 3-239 3-241 284	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. 4 Vancouver, Wash. 5 Vermillion, S. Dak. 5 Vermon, Tex. 7 Victoria, Tex. 7 Victory Village, Nev. 7 Virginia, Minn. 7 W Waco, Tex. 7 Wakefield, Ariz. 7 Walkerville, Mont. 7 Walla Walla, Wash. 7 Wardner, Idaho 7 Washington 7 Waterloo, Iowa 7 Waterloo, Iowa 7 Waterloo, Iowa Waterloon, S. Dak. 7	103 - 304 82 445 144 343 415 414 282 239 416 59 262 445 - 446 160 32 - 447 50 - 456 189 344
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Phoenix, Ariz. South Phoenix, Ariz. South Salt Lake, Utah South Salt Lake, Utah South Sar Francisco, Calif. 140 Sparks, Nev.	455 405 405 223 223 223 217 8,34 8,41 262 187 2-343 328 160 4-345 3-139 3-140 55 217 3-239 3-141 284 7-188 326	Vallejo, Calif. Valley City, N. Dak	03 - 304 82 445 144 343 415 414 282 239 416 59 262 45 - 460 132 - 447 50 - 456 189 344 417 190 259
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Phoenix, Ariz. South Phoenix, Ariz. South Salt Lake, Utah South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Sperry, Okla. Spokane, Wash. 442	455 405 405 223 223 223 217 8,34 8,41 262 187 2-343 328 160 4-345 3-139 3-140 55 217 3-239 3-141 284 7-188 326	Vallejo, Calif. Valley City, N. Dak	416 416 415 414 414 414 415 414 416 59 262 415 416 160 132 447 50 416 189 344 417 190 258
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Phoenix, Ariz. South Phoenix, Ariz. South Salt Lake, Utah South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Sperry, Okla. Spokane, Wash. 442	455 405 405 223 223 223 257 8, 34 8, 41 262 187 2-343 326 336 3-139 3-140 5-14	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington Water analyses Waterloo, Iowa Watertown, S. Dak. Waxahachie, Tex. Webster City, Iowa Wellston, Mo.	03 - 304 82 445 144 343 415 414 282 239 416 59 262 45 - 460 132 - 447 50 - 456 189 344 417 190 259
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Phoenix, Ariz. South Phoenix, Ariz. South Salt Lake, Utah South Salt Lake, Utah South Salt Lake, Utah South San Francisco, Calif. Sperry, Okla. Sperry, Okla. Sperry, Okla. Spokane, Wash. Springfale, Ark. Springfield, Mo.	455 405 405 223 223 223 227 8,34 8,41 262 187 2-343 3 326 406 406 406 406 406 406 406 406 406 40	Vallejo, Calif. Valley City, N. Dak	416 416 415 414 414 414 415 414 416 59 262 415 416 160 132 447 50 416 189 344 417 190 258
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Phoenix, Ariz. South Phoenix, Ariz. South Salt Lake, Utah South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Sperry, Okla. Spokane, Wash. Springfield, Mo.	455 405 405 223 223 223 257 8, 34 8, 41 262 187 2-343 38 160 406 7-345 3-139 3-140 55 217 3-284 7-188 3-239 3-2443 7-80 2-80	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. Vancouver, Wash. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington Water analyses Waterloo, Iowa Watertown, S. Dak. Waxahachie, Tex. Webster City, Iowa Webster Groves, Mo. Wellston, Mo. Wenatchee, Wash. West Helena, Ark.	03 - 304 82 445 144 343 415 414 282 239 416 59 262 445 - 446 189 344 417 190 259 248 448 448
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sherwesbury, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sidatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Phoenix, Ariz. Southport, La. South Phoenix, Ariz. South Salt Lake, Utah South San Francisco, Calif. 140 South San Francisco, Calif. 140 Spersy, Okla. Spencer, Iowa Spokane, Wash. Springfield, Mo. Springfield, Mo. Springfield, Oreg. Springville, Utah 425	455 405 405 223 223 223 227 8, 34 8, 41 2-343 326 38 160 406 7-345 3-139 3-140 55 217 3-249 1-140 284 1-140 284 1-140	Vallejo, Calif. Valley City, N. Dak	03 - 304 82 445 144 343 415 414 282 239 416 59 262 45 - 446 132 - 447 150 - 456 189 324 417 190 258 446 82
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Pasadena, Calif. South Pasadena, Calif. South Phoenix, Ariz. Southport, La. South St. Paul, Minn. South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Sperry, Okla. Sperry, Okla. Spokane, Wash. Springdield, Mo. Springfield, Mo. Springfield, Mo. Springfield, Mo. Springfield, Oreg. Springfield, Utah Stillwater, Okla.	455 405 405 223 223 223 257 8, 34 8, 41 262 187 2-343 38 160 406 7-345 3-139 3-140 55 217 3-284 7-188 3-239 3-2443 7-80 2-80	Vallejo, Calif. Valley City, N. Dak	343 415 1444 343 415 559 2239 416 160 132 445 445 445 445 189 3444 411 190 255 288 888 888 838
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Bakota South Phoenix, Ariz. South Phoenix, Ariz. South Salt Lake, Utah South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Sperry, Okla. Spokane, Wash. Springfield, Mo. Springfield, Mo. Springfield, Oreg. Springville, Utah Stillwater, Okla. Oklahoma A. & M.	455 405 405 223 223 227 8, 34 8, 41 262 187 2-343 326 336 3-139 3-140 55 2-141 284 7-188 3-239 3-141 284 7-188 3-239 3-243 7-280 3-36 3-36 3-37 3	Vallejo, Calif. Valley City, N. Dak. 3 Van Buren, Ark. 4 Vancouver, Wash. 5 Vermillion, S. Dak. 5 Vermillion, S. Dak. 7 Vermon, Tex. 7 Victoria, Tex. 7 Victory Village, Nev. 7 Virginia, Minn. 7 W Waco, Tex. 8 Wakefield, Ariz. 8 Wakefield, Ariz. 8 Wakerville, Mont. 9 Walla Walla, Wash. 9 Wardner, Idaho 9 Washington 9 Water analyses 9 Waterloo, Iowa 9 Watertown, S. Dak. 9 Waxhachie, Tex. 9 Webster City, Iowa 9 Webster Groves, Mo. 9 Wellston, Mo. 9 Wenatchee, Wash. 9 West Hollywood, Calif. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9 West Memphis, Ark. 9	03-304 822 4454 4454 1444 343 4152 239 4166 262 262 262 45-446 188 344 417 199 258 446 828 888
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sidatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Phoenix, Ariz. Southport, La. South Sar Francisco, Calif. South Salt Lake, Utah South San Francisco, Calif. 146 Sparks, Nev. Spencer, Iowa Spencer, Iowa Sperry, Okla. Spokane, Wash Springfield, Mo. Springfield, Ores Springfield, Ores Springfield, Ores Springfield, Utah Stillwater, Okla. Stillwater, Okla. Oklahona A. & M. College	455 405 405 223 223 223 227 8, 34 8, 34 8, 34 262 187 2-343 336 338 160 406 7-345 3-139 3-140 55 217 2188 326 338 321 321 321 321 321 321 321 321	Vallejo, Calif. Valley City, N. Dak	03-304 822 4444 443 343 4114 2622 239 4166 32-447 50-456 88 844 88 83 224 418
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Bakota South Pasadena, Calif. South Phoenix, Ariz. South Phoenix, Ariz. South St. Paul, Minn. South Salt Lake, Utah South Salt Lake, Utah South San Francisco, Calif. 140 Sparks, Nev. Spencer, Iowa Sperry, Okla. Spokane, Wash. Springfield, Mo. Springfield, Oreg. Springfield, Oreg. Springville, Utah Stillwater, Okla. Stillwater, Okla. Stillwater, Okla. College Stockton, Calif. 141	455 405 405 223 223 227 8, 34 8, 41 262 187 2-343 326 38 160 406 53-139 3-140 53-140 53-140 53-140 53-141 284 7-188 3-140 3-1	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington Water analyses Waterloo, Iowa Watertown, S. Dak. Waxahachie, Tex. Webster City, Iowa Webster Groves, Mo. Wellston, Mo. Wenatchee, Wash. West Helena, Ark. West Hollywood, Calif. West Mempris, Ark. West Monroe, La. West University Place, Tex. West Yuma, Ariz.	334 415 343 415 559 225 225 245 446 45 445 447 417 50 45 46 82 88 88 82 222 418 88 88 82 222 418 418 418 418 418 418 418 418 418 418
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Pasadena, Calif. South Phoenix, Ariz. South Salt Lake, Utah South Salt Lake, Utah South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Sperry, Okla. Spokane, Wash. Springfield, Mo. Springfield, Mo. Springfield, Oreg. Springville, Utah Stillwater, Okla. College Stockton, Calif. Storm Lake, Iowa 185 Storm Lake, Iowa 185 Storm Lake, Iowa 186 Storm Lake, Iowa 186	455 405 405 223 223 223 227 8, 34 8, 41 262 187 2-343 326 336 3-139 3-140 257 257 257 3-140 257 257 3-140 257 257 257 257 257 257 257 257	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington Water analyses Waterloo, Iowa Watertown, S. Dak. Waxahachie, Tex. Webster City, Iowa Webster Groves, Mo. Wellston, Mo. Wenatchee, Wash. West Helena, Ark. West Monroe, La. West University Place, Tex. West Vuma, Ariz. White Settlement, Tex.	03-304 822 4144 343 4141 2822 239 416 6132 447 199 88 88 88 88 82 244 416 61 416 416 416 416 416 416 416 41
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sidatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Pasadena, Calif. South Phoenix, Ariz. Southport, La. South Sar Francisco, Calif. 14South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Spencer,	455 405 405 223 223 223 227 8, 34 8, 41 2-343 326 326 38 160 406 7-345 3-140 55 217 3-140 55 217 2188 3-140 7-188 3-244 7-188 3-2443 79-80 3-36	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington Water analyses Waterloo, Iowa Watertown, S. Dak. Waxahachie, Tex. Webster City, Iowa Webster Groves, Mo. Wellston, Mo. Wenatchee, Wash. West Helena, Ark. West Memphis, Ark. West Monroe, La. West Yuma, Ariz. Whitte Settlement, Tex. Webiter Calif.	03-304 822 444 444 343 4343 4114 2222 399 4166 32-447 50-456 88 83 446 88 83 224 416 616
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux City, Iowa Sioux Falls, S. Dak. Skiatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Pasadena, Calif. South Pasadena, Calif. South Phoenix, Ariz. South St. Paul, Minn. South Salt Lake, Utah South Salt Lake, Utah Sparks, Nev. Spencer, Iowa Sperry, Okla. Spokane, Wash. Springfield, Mo. Springfield, Mo. Springfield, Oreg. Springfield, Utah Stillwater, Okla. Stillwater, Okla. Stillwater, Okla. Stillwater, Okla. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark. Stuttgart, Ark.	455 405 405 223 223 227 8, 34 8, 41 262 187 2-343 326 38 160 406 53-139 3-140 517 3-239 3-140 517 3-239 3-141 2-84 8, 326 2-443 8, 326 3-326 3-326 3-326 3-327 3-328 3-140 5-329 3-141 2-84 3-326 3-326 3-326 3-326 3-327 3-328 3-329 3-141 2-84 3-326 3-326 3-326 3-327 3-329 3-141 3-326 3-326 3-326 3-326 3-327 3-328 3-329 3-141 3-326 3-326 3-326 3-326 3-327 3-328 3-328 3-326 3-328 3-329 3-141 3-326 3-327 3-326 3-3	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington Water analyses Waterloo, Iowa Watertown, S. Dak. Waxahachie, Tex. Webster City, Iowa Webster Groves, Mo. Wellston, Mo. Wenatchee, Wash. West Helena, Ark. West Hollywood, Calif. West Monroe, La. West University Place, Tex. West Yuma, Ariz. Whitte Settlement, Tex. Whitter, Calif. Wichita Falls, Tex.	03-304 822 4144 343 4141 2822 239 416 6132 447 199 88 88 88 88 82 244 416 61 416 416 416 416 416 416 416 41
Sheridan, Wyo. Sherman, Tex. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Shreveport, La. Sikeston, Mo. Silica, activated removal Silver Bow Park-Floral Park, Mont. Sioux City, Iowa Sioux Falls, S. Dak. Sioux Falls, S. Dak. Sidatook, Okla. Sludge Smelterville, Idaho Snyder, Tex. South Dakota South Gate, Calif. South Pasadena, Calif. South Phoenix, Ariz. Southport, La. South Sar Francisco, Calif. 14South San Francisco, Calif. Sparks, Nev. Spencer, Iowa Spencer,	455 405 405 223 223 223 227 8, 34 8, 41 2-343 326 326 38 160 406 7-345 3-140 55 217 3-140 55 217 2188 3-140 7-188 3-244 7-188 3-2443 79-80 3-36	Vallejo, Calif. Valley City, N. Dak. Van Buren, Ark. Vancouver, Wash. Ventura, Calif. Vermillion, S. Dak. Vermon, Tex. Victoria, Tex. Victory Village, Nev. Virginia, Minn. W Waco, Tex. Wakefield, Ariz. Walkerville, Mont. Walla Walla, Wash. Wardner, Idaho Washington Water analyses Waterloo, Iowa Watertown, S. Dak. Waxahachie, Tex. Webster City, Iowa Webster Groves, Mo. Wellston, Mo. Wenatchee, Wash. West Helena, Ark. West Memphis, Ark. West Monroe, La. West Yuma, Ariz. Whitte Settlement, Tex. Webiter Calif.	03-304 822 444 444 343 4343 4114 2222 399 4166 32-447 50-456 88 83 446 88 83 224 416 616

INDEX

	Page		Page
Wichita, Kans	3-209	Wyoming 4	48-456
Williston, N. Dak	304		
Willmar, Minn	240	Y	
Winfield, Kans	210		
Winnemucca, Nev	285	Yakima, Wash	447
Winona, Minn	241	Yankton, S. Dak	345
Winslow, Ariz	60	Yuma, Ariz	61
Worland, Wvo.	456	•	